A More Objective Quantification of Micro-Expression Intensity
through Facial Electromyography

Shaoyuan Lu
lusy@psych.ac.cn
CAS Key Laboratory of Behavioral
Science, Institute of Psychology &

Jingting Li
lijt@psych.ac.cn
CAS Key Laboratory of Behavioral
Science, Institute of Psychology &

Yan Wang
wangyanl@psych.ac.cn
CAS Key Laboratory of Behavioral
Science, Institute of Psychology &

Department of Psychology, University ~Department of Psychology, University ~Department of Psychology, University

of the Chinese Academy of Sciences
Beijing, China

Zizhao Dong
dongzz@psych.ac.cn
CAS Key Laboratory of Behavioral
Science, Institute of Psychology &

of the Chinese Academy of Sciences
Beijing, China

ABSTRACT

Micro-expressions are facial expressions that individuals reveal
when trying to hide their genuine emotions. It has potential ap-
plications in areas such as lie detection and national security. It
is generally believed that micro-expressions have three essential
characteristics: short duration, low intensity, and local asymme-
try. Most previous studies have investigated micro-expressions
based on the characteristic of short duration. To our knowledge,
no empirical studies have been conducted on the low-intensity
characteristic. In this paper, we use facial EMG for the first time
to study the characteristic of low intensity for micro-expression.
In our experiment, micro-expressions were elicited from subjects
and simultaneously collected their facial EMG through the second-
generation micro-expression elicitation paradigm. We collected
and annotated 33 macro-expressions and 48 micro-expressions. By
comparing the two indicators of EMG :(1) the percentage of apex
value in maximum voluntary contraction (MVC%) and (2) the area
under EMG signal curve (integrated EMG, iEMG), we found that the
MVC% and iEMG of micro-expression were significantly smaller
than that of macro-expression. The result demonstrates that the
intensity of micro-expression is significantly smaller than that of
macro-expression.
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1 INTRODUCTION

Emotion is an autonomic response triggered by environmental stim-
uli involving complex internal autonomic nervous system activity
and external bodily responses [1]. External signals generated by
emotion, such as facial muscle activity, provide clues to what is
happening inside. However, for various reasons, people are often
unwilling to express their genuine emotions in social communica-
tion and even hide or disguise their emotions. By more accurately
perceiving an individual’s emotional state, we can better under-
stand others’ thoughts and make wiser judgments [2]. Hess and
Kleck found that unrestrained or naturally occurring emotional
expressions usually last a few seconds or more, while hidden emo-
tions show only very rapid expressions, not even more than 1 s [3].
Later studies considered that micro-expressions are these external
emotional signals accidentally “leaked” when individuals try to
suppress or manage facial expressions [4].

Facial micro-expressions are generally defined as the brief, subtle
and involuntary facial muscle movements that reflect the genuine
emotion [5, 6]. Since the generation of micro-expressions is in-
voluntary and uncontrollable, micro-expression analysis can be
used in various essential applications, including clinical diagnosis,
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interrogation, interview, and lie detection [7]. For example, micro-
expression can be used in the clinical field to understand patients’
genuine emotions and provide better treatment strategies. Mean-
time, micro-expressions could serve as clues to capture the real
feelings of interviewees in interview situations, which is helpful
for further investigation. In addition, micro-expressions are often
mentioned in the field of lie detection because they are considered
an effective cue for lie and risk behavior detection [8].

Due to the potential application of micro-expression being so ex-
tensive and essential, the related research is increasing daily. How-
ever, micro-expressions have a concise duration and very low move-
ment intensity, so detecting and recognizing micro-expressions
has become challenging [9]. In manual labeling, micro-expressions
are difficult to detect through the naked eye and the process is
time-consuming and laborious. In addition, only partial facial mus-
cle movements of typical facial expressions were found in micro-
expressions, making labeling more difficult [10-12]. Therefore, sam-
ple size of manually annotated micro-expression database is very
small. Currently, there are only eight published spontaneous ME
databases, including CASME series [13-16], SMIC [17], 4DME [18],
SAMM [19], and MMEW [20].

For the above-mentioned micro-expression databases, the dura-
tion is the most commonly used dividing criterion between micro-
expression and macro-expressions. Ekman considered 200 ms is the
upper limit of micro-expressions, i.e., the boundary between tradi-
tional facial expressions and micro-expressions [6]. However, there
is no clear evidence of this demarcation. In addition to the classic
200 ms, there are other versions of the upper duration definition,
including a quarter of a second [21], a third of a second [22], and
half a second [11, 23]. Yan et al. explored the duration distribution
of the leaked fast facial expression and gave the duration boundary
of micro-expression, i.e., the lower limit and upper limit are about
170 ms and 500 ms, respectively [12]. The initial stage, the period
from onset to the apex, is also considered a proper indicator to
define micro-expression, with a lower limit of about 65 ms and
an upper limit of about 260 ms. All of the above studies classified
micro-expressions based on their duration. However, although low
intensity is considered to be one of the characteristics for micro-
expressions, there is no compelling empirical study to prove a
significant difference between the intensity of micro-expression
and macro-expression.

Currently, the popular labeling method is to label action units
(AUs) according to the facial action coding system (FACS) proposed
by Ekman et al. [24]. FACS is based on the objective observation
of facial muscle movements. However, there is only one subjective
classification standard for AU intensity coding. The AU intensity
can be divided into five grades, represented by the letters A, B, C, D,
and E. Besides, the annotation of facial expression usually requires
FACS-certified experts. This subjective and unrepeatable intensity
coding method add to the obstacles for AU coders. Objective in-
tensity classification could lead to more reliable and reproducible
AU labeling. In addition, relatively little attention has been paid
to the measurement of intensity changes in computer science so
far [25], with exceptions include [26-29]. Due to the limited num-
ber of databases with AU intensity labeling [30], it is difficult to
measure AU intensity further.
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Addressing the difficulties of the current study, we found that
facial electromyography (EMG) may be an appropriate method,
using the biomedical signal as an objective indicator for the inten-
sity of micro-expressions. EMG signals with high temporal resolu-
tion allow real-time micro-expression detection. With advances in
sensor technology, EMG can be recorded wirelessly, with a high
signal-to-noise ratio, and thus hold the advantage of being less af-
fected by the environmental factors (such as lighting). For instance,
Perusquia-Hernandez et al. detected fast and subtle smiles using a
high-precision wearable EMG device [31].

EMG measures the electrical activity generated during muscle
contraction and is directly related to the movement produced by
the muscle [32]. Specifically, striated muscles consist of groups of
muscle fibers. EMG records the potential changes caused by action
potential conduction along these muscle fibers. Starting with an
article by Cacioppo, Petty, Losch, and Kim [33], who asserted that
“EMG activity differentiates the validity and intensity of emotional
responses,” EMG has become a generally accepted indicator of
various visual and emotional responses. Moreover, compared with
self-reported measures, EMG is more effective and sensitive, making
this approach particularly attractive [34-36]. Therefore, EMG is a
very suitable method for studying the intensity of facial movements
such as micro-expressions.

In this study, we investigate the intensity characteristic of micro-
expression through facial EMG. In particular,

o First, we collected samples with maximum face resolution,
allowing for more accurate video-based coding of micro-
expressions.

e Second, To the best of our knowledge, we are the first to use
an objective physiological indicator, EMG, to measure the
intensity of micro-expressions.

o Finally, the experimental results demonstrate significant dif-
ferences between micro-expressions and macro-expressions
in terms of intensity.

2 METHOD

2.1 Participants

Six subjects (4 females; Mean (M) = 25.67 years, Standard Deviation
(SD) = 3.3 years) were recruited for the experiment. The visual
acuity of the recruited subjects was normal or corrected to normal.
None of the subjects had a history of neurological, psychiatric, or
other severe medical conditions that could have affected the results.
Each subject was informed with detailed experiment instructions.
In addition, each subject signed informed consent prior to the ex-
periment and received a monetary reward at the end. Our study
followed the Declaration of Helsinki and was approved by the Insti-
tutional Review Committee of the Institute of Psychology, Chinese
Academy of Sciences.

2.2 Experimental settings

Our collection environment was a quiet and soundproof laboratory.
Two LED lights with reflective umbrellas were installed to provide
a stable and soft lighting environment. The subjects viewed the
stimuli through the monitor with speakers and 2564 X 1440 pixels
resolution in front of them. A Logitech C1000e camera, placed on
the monitor, captures moving images of the entire front of the head
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at a resolution of 3840 X 2160 pixels and a frame rate of 30 FPS.
In particular, the resolution of the face region is around 700 x 900
pixels. As listed in Table 1, among the published micro-expression
databases, the SAMM database [19] and MMEW [20] have the
highest face resolution, around 400 X 400 pixels. The resolution of
the face images acquired in our experiments is four times higher
than that of the SAMM data, allowing us to code facial expressions
more accurately.

Table 1: Approximate value of facial area resolution for
commonly-used spontaneous micro-expression databases.

Database Resolution Database Resolution
CASME [13] | 150 x 190 SMIC [17] 190 X 230
CASME I [14] | 280 x 340 || CAS(ME)? [15] | 200 X 340
SAMM [19] | 400 x 400 || MMEW [20] | 400 x 400
CAS(ME)? [16] | 250 x 300 4DME [18] 160 X 200

In the process of inducing micro-expressions through emotional
video stimuli, facial EMG signals and face videos of the subject
were recorded simultaneously. The digital tube display was placed
behind the subjects, as shown in Fig. 1, and used as synchronizing
EMG and video signals.

Digital tube display

Bipolar electrode

Figure 1: Data acquisition setting. Subjects were recorded on
video while watching emotional stimuli. EMG signals were
captured through electrodes attached to the subject’s face,
and a digital tube display on a whiteboard helped the coder
synchronize the frames in the recorded video with the EMG
signals. This Example image is selected from recorded videos
with the subject’s consent.

Particularly, as shown in Fig. 2, to avoid the interference of utility
power on signal transmission, we utilized a wireless transmission
method. Specifically, the collected EMG signals were transmitted to
the computer recording the data through a wireless router, with a
frequency band near 2.4 GHz, using the TCP/IP protocol. TCP was
a connection-oriented, reliable, byte-stream-based communication
protocol. Once a connection is established, data can be transmitted
multiple times. the EMG signal, on average, the value on the digital

FME 22, October 14, 2022, Lisboa, Portugal

tube display increments by one when two EMG signal packets were
received. In particular, the sampling frequency of EMG recording
equipment was 1 kHz, i.e., 1000 sampling points per second, each
packet contains 38 sampling points, so approximately 26 packets
were received per second. Therefore, digital tube display counts
increased by 13 per second.

Camera RGB video
with 3840 x 2160 pixels
and 30 FPS
| Record

Facial EMG
(Fs = 1kHz)

Record

Digital tube display

EMG recordlng equipment Subject

Value ++1
with two packets
received

TCP/IP protocol
EMG packet with 38
sample point

1
1
PS
G~
D mmm———————) - -
WIFI transmission Serial Connection

PC

Figure 2: Equipment layout based on data collection and
transmission.

Concerning the EMG acquisition equipment, we utilized the
bipolar electrode. Specifically, it was set up with two electrodes,
one at the forward input and one at the backward input of the
differential amplifier, positioned close to the muscle tissue to be
measured, as shown in Fig. 3. The bipolar electrode measured the
potential difference between the two electrodes. And the electrical
signal generated in the distant muscle was attenuated by the dif-
ference. Therefore, the bipolar configuration was less sensitive to
interference and crosstalk compared with the monopolar electrode.
Seven muscles of the face were selected for measurement. As illus-
trated in Fig. 3, they are frontalis, corrugator supercilii, orbicularis
oculi, levator labii superioris alaeque nasi, zygomaticus, orbicularis
oris, and depressor anguli oris. Dopson et al. proposed that the left
facial region expresses emotions more strongly than the right facial
region [37]. Hence, facial EMG was measured only on the left half
of the face in our study. Meantime, the right side of the face was not
taped with electrodes, allowing the coder to observe the subjects’
facial expressions.

2.3 Procedure

The procedure of the experiment is shown in Fig. 4. In the prepara-
tion stage, we explained the experiment’s specific procedures and
the EMG equipment’s safety to the subjects. Then, after confirming
the subjects’ agreement on the experiment operation and the video
recording, the subjects were required to sign the informed consent.

In part A, the subjects were required to watch and learn seven
different facial muscle movements corresponding to seven EMG
acquisition channels. Then, they were asked to perform each move-
ment three times at maximum amplitude. This step was to capture
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Figure 3: Electrode position distribution for facial EMG signal
acquisition based on seven facial muscles.

Sample Video

Learning facial
muscle movements

Watching emotional
video stimuli

Subject Subject

AV Keep
§ neutral face
A

Ay

| Perform at
| maximum
| amplitude

Part B : Collecting ME
-Emotional video elicitation

Part A : Collecting
MVC signal

Figure 4: The experimental procedure consists of two parts,
A and B. Part A collected the MVC of each muscle, and part
B used video stimuli to evoke expressions.

the maximal voluntary contraction (MVC) of each subject across
seven muscles as the baseline for further analysis.

In part B, subjects were asked to watch 24 emotional video stim-
uli. There were six categories of emotions in total, with the same
number of video stimuli for each category (i.e., four segments per
emotion category), and each video stimuli ranges from 30 seconds
to 2 minutes. Video stimuli were presented in a random order but
balanced to minimize the sequential presentation of videos with the
same emotional category. In the experiment, subjects were expected
to keep expressionless while watching the video stimuli. This re-
quirement was to induce the micro-expressions that occur when
a person tries to hide his or her genuine expression. The method
we used belongs to the second generation of the micro-expression
elicitation paradigm [16], which is used in most micro-expression
databases. Before the experiment, subjects were told their facial
expressions would be recorded on the camera. They would be paid
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more money if they did an excellent job hiding their facial expres-
sions. This configuration is to increase the subjects’ motivation for
the experiment.

2.4 EMG signal pre-processing

The raw EMG signal was pre-processed before the meaningful
interpretation of the EMG data, because the raw EMG signals
usually carry a lot of noise. In our experiment, the EMG signal
pre-processing involves removing DC offset, denoise, full-wave
rectification, and finally linear envelope, as shown in Fig. 5. All of
the processes are implemented on the MATLAB platform.

(1) Removing DC offset: The DC component is the mean value
of the signals. The EMG signal removing DC offset E; is
obtained by subtracting the mean value from the raw EMG
signal E, (Fig. 5. B).

E; = E; — mean(E,;) (1)

(2) Denoise: The predominant frequency range of facial EMG
signals E; is 20-500 Hz [38]. Therefore, we applied a 2nd-
order band-pass Butterworth filter (BFy,) from roughly 20
Hz to 450Hz to minimize noise within the EMG signals (Fig. 5.
C).

Ep = BFy,(Eg, 2, [Wn1, Wny]) @)

where Wny and Whnjy represent the lower and the higher
cutoff frequencies, respectively. Wny = 20 X 2/1000, Wny =
450 X 2/1000.

(3) Full-wave rectification: The true baseline of EMG is zero,
and the EMG signal fluctuates around the baseline. Thus, the
full-wave rectification of the EMG signal is required before
signal analysis [39]. Specifically, The EMG signal E;, was
rectified by absolute value to achieve full-wave rectification
of the EMG signals (Fig. 5. D).

Ef = abs(Eb) (3)

(4) Linear envelope: This process on the EMG signals Ef is
to obtain a more intuitive data representation, and hence to
facilitate researchers to compare and analyze the amplitude
and wavelength of the EMG signals. The linear envelope
of the EMG signals E; is implemented through a low-pass
filter. In particular, the filter is a 2nd-order Butterworth filter
(BFyp) with a low-pass cutoff frequency of 6Hz (Fig. 5. E).

E; = BFlp (Ef, 2, Wn) (4)

where Wn is the normalized cutoff frequency, Wn = 6 X
2/1000, [B, A] denotes the coefficients of the Butterworth
filter.

All the following data analysis is based on the envelop EMG
signal Ej.

2.5 Data analysis based on EMG indicators

To correlate facial expressions with facial EMG signals, this study
first coded facial expressions on frame-level based on the FACS.
Then, we searched for the apparent amplitude of the EMG signal in
the time interval corresponding to the onset frame and offset frame
of expression.
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Figure 5: Four steps of EMG signal pre-processing: removing
DC offset, denoise, full-wave rectification, and linear enve-
lope.

2.5.1 Video coding. In the first step of data analysis, a trained coder
coded the facial expressions of the collected videos. During the
coding process, the coder need to label all the emotion-meaningful
expressions, recording the onset, apex, and offset frame. Then, based
on the definition of micro-expression duration [6], we classified
facial expressions into micro-expressions and macro-expressions.
Therefore, the expressions whose duration was less than 500 ms
were classified as micro-expression and the other expressions as
macro-expression.

2.5.2 Detection of expression-related EMG signal intervals. In the
second step of the data analysis, we matched facial expressions to
EMG signals through the numbers on the digital tube display. The
aim was to find the corresponding EMG signal interval when the
subject’s expression appeared. In particular, if the time of expres-
sion appearance was consistent with the change points of the EMG
signal, the EMG signal in this expression period would be consid-
ered the facial EMG signal at the time of expression appearance.
The example of the correspondence is illustrated in Fig. 6.

We used two indicators, MVC%, and iEMG, for statistical analysis
of EMG corresponding to facial expressions.

® MVC%: For each muscle EMG signal of each subject, the
apex amplitude of the facial expression EMG signal was
divided by the maximum voluntary contraction (MVC) of the
corresponding muscle to obtain the amplitude ratio of that
expression action to the muscle MVC. This ratio is denoted
as MVC%.
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Figure 6: EMG signal extraction based on the frame-based
annotation of facial expression.

¢ iEMG: The integrated electromyographic (iEMG) is the math-
ematical integration of the absolute value of the EMG signal
during the facial expression. In other words, iIEMG is the area
under the curve of the EMG signal, which can be understood
as the sum of the absolute values of the EMG amplitude.

3 RESULT

We labeled 98 facial expressions, 17 of which were deleted due to
the lack of corresponding EMG signals. This may be because the
electrodes cover only seven muscles on the left side of the face
and there are uncaptured facial movements in the remaining facial
regions. In sum, 48 micro-expressions and 33 macro-expressions
were used for statistical analysis. Specifically, as shown in Fig. 6,
the EMG signal of each expression is extracted between the trough
before the EMG crest and the trough after the EMG crest. The
statistical analysis is conducted on two indicators of the EMG signal
for each expression: MVC% and iEMG, as listed in Table. 2.

Table 2: The numerical distribution of the two indexes of
micro-expression and macro-expression. N represents the
number of facial expressions, Mean represents average value,
and SD represents standard deviation.

Expressiontype =N Mean SD
Macro-expression 33 27.14 23.83
Micro-expression 48 10.87 12.82
Macro-expression 33 20.73  25.44
Micro-expression 48 254  2.24

MVC%

iIEMG

The data showed that the average maximum amplitude of micro-
expression EMG signals was only about 10% of MVC. Because the
amplitude of the EMG signal represents the intensity of movement
of micro-expressions, that is, the muscle movement at peak for
micro-expressions was only about 10% of the MVC of muscles. Thus,
we can conclude that the EMG amplitude of micro-expressions is
tiny. In other words, the intensity of micro-expressions is low.

The MVC% and iEMG between micro-expressions and macro-
expressions were compared respectively, as shown in Fig. 7. The
independent sample T-test results at a 95% confidence level showed
that the MVC% of micro-expressions (M = 10.87, SD = 12.82) was
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Figure 7: Statistical analysis on MVC% and iEMG between
micro-expressions and macro-expressions. The EMG data of
micro-expressions and macro-expressions were significantly
different by independent sample T-test with a 95% confidence
interval. ** in the figure represents p<0.01.

significantly smaller than the MVC% of macro-expressions (M =
27.14,SD = 23.83), t(79) = 3.581, p < 0.01, d = 0.81. Meantime, the
iEMG of micro-expressions (M = 2.54, SD = 2.24) was also signif-
icantly smaller than the iEMG of macro-expressions (M = 20.73,
SD = 25.44), t(79) = 4.095, p < 0.01, d = 0.97. This result indicates
that the EMG amplitude of micro-expression is significantly smaller
than that of macro-expression.

4 DISCUSSION

This experiment aims to study one of the characteristics of micro-
expressions by an objective physiological indicators (EMG): low
intensity.

MVCY% is the ratio between apex value of the facial EMG signal
and the corresponding muscle’s MVC. It represents a comparable
relative proportion. This relative ratio allows cross-muscle and
cross-subject comparisons while avoiding individual differences
between EMG signals and enabling direct comparison of the seven
muscle activities. Experimental results showed that the intensity
for micro-expressions was only up to 10% of the MVC. Hence, it
can be intuitively proved that the movement intensity of micro-
expressions is subtle.

Besides, we could conduct some explanations and reasoning for
the muscle movement at peak for macro-expression in this exper-
iment, only reaching the MVC of 27%. One possibility is that the
macro-expression passively induced by the emotional video stimuli
is tiny. The intensity of macro-expression movements that are ac-
tively generated during socialization may be greater than those that
are passively induced. Another explanation is that our experiment
requires subjects to suppress their emotions and keep their faces
expressionless. Although the intensity of macro-expressions in our
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experiments was smaller than common, the comparison between
MVC% of micro-expression and macro-expression showed signif-
icant differences. As a result, by comparing the relative values of
EMG amplitude of micro-expressions and macro-expressions, we
can conclude that the intensity of micro-expressions is lower than
that of macro-expressions.

In addition, the iEMG indicator involves an additional temporal
dimension compared with MVC% and measures the sum of time
and space of the electrical activity of muscle fibers (sarcoid depo-
larization) in the recording electrode region. Our results show that
the iEMG of micro-expressions is significantly smaller than that
of macro-expressions. Due to the addition of the time dimension,
micro-expression characteristics, i.e., short duration and low inten-
sity, can be preliminarily verified. However, because of the small
sample size, we could not provide the continuous-time distribu-
tion of micro-expressions. The demonstration that the duration of
micro-expressions is in a specific time range from 0 to 500 ms could
be expected by increasing the sample size.

However, it is relatively difficult to give the specific intensity
boundary between micro-expression and macro-expression through
EMG signals for the following three reasons. The first two are in-
dividual differences in muscle movement among subjects and the
differences in EMG signals between muscle channels. These two
problems can be primarily overcome by the relative value indica-
tors selected in our study. Nevertheless, the third and most crucial
point is that the EMG signals collected by different researchers are
also different in many aspects, such as recording and preprocess-
ing methods. Furthermore, unlike the time scale for the duration,
there is no uniform metric or unit for intensity. In the subsequent
research, we will continue exploring the specific intensity range
of micro-expressions reflected by MVC% by increasing the expres-
sions’ sample size. In this way, other researchers could use the
MVC% interval as one of the partitioning criteria to classify micro-
expressions in the future. Specifically, by determining whether the
ratio of the EMG peak to each expression’ MVC is in the MVC%
interval of macro-expression or micro-expression, the expression
type could be classified in terms of the EMG signal.

5 CONCLUSION

In response to the absence of empirical studies on the intensity
of micro-expressions, our study proves the low intensity of micro-
expressions through facial EMG. In particular, we utilized EMG
signals to describe the essential characteristics of micro-expressions.
Significant differences were found by comparing the EMG ampli-
tudes of micro-expressions and macro-expressions. Thus, EMG
signal can be used as one of the distinguishing criteria between
micro-expressions and macro-expressions. Meanwhile, the ampli-
tude of the EMG signal of micro-expression is minor, indicating
that the electrical activity of muscle movement during the genera-
tion of micro-expression is smaller than that of macro-expression.
Furthermore, the generation process of micro-expressions can be
further explored through the facial muscle activities. Our study is
a preliminary attempt to explore the physiological mechanism of
micro-expressions. Future research could also combine EMG and
electroencephalogram signals to determine how micro-expressions
are transmitted from the cortex to the facial nerve.
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