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Abstract—Face recognition plays a important role in computer
vision. Recent researches show that high dimensional face images
lie on or close to a low dimensional manifold. LPP is a widely
used manifold reduced dimensionality technique. But it suffers
two problem: (1) Small Sample Size problem; (2)the performance
is sensitive to the neighborhood size k. In order to address the
problems, this paper proposed a Matrix Exponential LPP. To
void the singular matrix, the proposed algorithm introduced the
matrix exponential to obtain more valuable information for LPP.
The experiments were conducted on two face database, Yale and
Georgia Tech. And the results proved the performances of the
proposed algorithm was better than that of LPP.

I. INTRODUCTION

Automatic facial recognition has been a longstanding chal-
lenge in the field of computer vision and pattern recognition
for several decades. A real face image usually has a high
dimensional data. In order to deal with the high dimensional
image data adequately, its dimensionality needs to be re-
duced. Dimensionality reduction is the transformation of high-
dimensional data into a meaningful representation of reduced
dimensionality. Principal Component Analysis (PCA)[1] and
Linear Discriminant Analysis (LDA)[2] are two widely used
techniques for reduced dimensionality. Recently, a number of
research efforts have shown that the high dimensional image
information in real world lies on or is close to a smooth
nonlinear low dimensional manifold. However, both PCA and
LDA fail to discover the underlying manifold structure, due
to the fact that they aim only to preserve the global structures
of the image samples. In order to uncover the essential
manifold structure of the facial images, laplacianfaces[3] were
obtained by using Locality Preserving Projections (LPP)[4] to
preserve the local structure of image samples i.e.,the neighbor
relationship between samples.

The neighbor relationship is measured by the artificial
constructed adjacent graph. Usually, the most popular adjacent
graph construction manner is based on the k nearest neighbor
and ϵ−lneighborhood criteria. Once a adjacent graph is con-
structed, the edge weights are assigned by various strategies
such as 0-1 weights and heat kernel function. Unfortunately,
such adjacent graph is artificially constructed in advance,
and thus does not necessary uncover the intrinsic local geo-
metric structure of the samples. To make things worse, the
performance of LPP is seriously sensitive to the value of
k. Even though the samples come from the same database
and the numbers of each individual images are the same.
To address the problem, some researches focus on how to
construct the adjacent graph. Sample-dependent Graph [5]
is constructed based on samples in question to determine
neighbors of each sample and similarities between sample

pairs, instead of predefining the same neighbor parameter k
for all samples. Locally Discriminating Projection (LDP) [6]
uses label information to construct the adjacent graph. Sparsity
Preserving Projections (SPP) [7] aims to preserve the sparse
reconstructive relationship of the samples, which is achieved
by constructing the adjacent graph using a minimizing a L1
regularization-related objective function.

Another problem of LPP is the fact that it like LDA also
suffers from the small sample size problem. This derives from
that when the dimension of the sample is greater than the
number of the samples, there is the singular of the matrices.
To deal with the problem, laplacianfaces[3] uses PCA to
reduce the dimension, and then applying the LPP. However,
a potential problem is that the PCA criterion may not be
compatible with the LPP criterion, thus the PCA step may
discard the valuable information for LPP in the null space
of XLXT . In order to address the issue, the Direct LPP
[8] optimizes locality preserving criterion on high-dimensional
images via simultaneously diagonalizing XLXT and XDXT .
Xu et al.[9] transforms XLXT and XDXT into the main
space of XDXT , then find the optimal solution in the main
space of XDXT . The above methods can extract at most N−1
dimensions feature vector.

To alleviate the above two problems of LPP: (1) the perfor-
mance is sensitive to the value of k[10]; (2) the SSS problem,
we propose a locality preserving projection based on matrix
exponential. The rest of this paper is organized as follows: in
Section II, we briefly review the LPP algorithm; in Section III,
we give the background of matrix exponential, and introduce
the Matrix Exponential LPP algorithm; in Section IV, the
experiments are conducted on two public face databases: Yale
and Georgia Tech face database, and the results are analyzed
which show that the performance of Matrix Exponential LPP
is better than that of LPP, especially for face database with
different poses and cluttered background like the Georgia Tech
face database; finally in Section V, conclusions are drawn.

II. LOCALITY PRESERVING PROJECTIONS

Given a set of N samples X = {x1,x2, . . . ,xN},xi ∈ RD,
we attempt to find a transformation matrix W of size D × d
to map: yi = WTxi,yi ∈ Rd, such that yi easier to be
distinguished in the projective subspace.

Locality Preserving Projections (LPP)[4] attempts to pre-
serve the local structure of the samples in the low-dimensional
projected subspace as much as possible. The local structure of
the samples is measured by constructing the adjacency graph
G. There are two ways to construct G: ε− neighborhoods and



k nearest neighbors. The similarity matrix S is defined by the
following two ways:

1) 0-1 ways

Sij =

{
1 nodes i and j are connected in G

0 otherwise.
(1)

2) Heat kernel

Sij =

e−
∥xi−xj∥

2

2t2 nodes i and j are connected in G

0 otherwise.
(2)

where t is a parameter that can be determined empirically.
When t is large enough, exp(−∥xi−xj∥2/t) = 1, heat kernel
becomes 0-1 ways. Obviously, 0-1 ways is a special case
of the heat kernel. In order to contain no any discriminant
information, we do not use any label information to construct
the similarity matrix S. We hope that the criterion function
incurs a heavy penalty if neighboring points xi and xj are
mapped far apart. Therefore, minimizing it is an attempt to
ensure that if xi and xj are close, then yi and yj are close,
as well. That means to minimize:∑

i,j

(yi − yj)
2Sij (3)

A reasonable criterion function of LPP is as follows:

min
WTXDXTW=I

WTXLXTW (4)

where D is a diagonal matrix; its entries Dii =
∑

j Sij

measure the local density around xi. L = D − S is the
Laplacian matrix. Finally, the transformation matrix consists
of the eigenvectors associated with the smallest eigenvalues of
the following generalized eigenvalue problem:

XLXTw = λXDXTw (5)

III. MATRIX EXPONENTIAL LPP
A. Matrix Exponential

In this section, the definition and properties of matrix
exponential are introduced. Given an arbitrary n × n square
matrix A, its exponential is defined as follows:

exp(A) = I+A+
A2

2!
+ · · ·+ Am

m!
+ · · · (6)

where I is a identity matrix with the size of n × n. The
properties of matrix exponential are listed as follows:

1) exp(A) is a finite matrix.
2) exp(A) is a full rank matrix
3) If matrix A commutes with B, i.e.,AB = BA, then

exp(A+B) = exp(A) exp(B).
4) If B is a nonsingular matrix, then exp(B−1AB) =

B−1 exp(A)B.
5) If v1,v2, . . . ,vn are eigenvectors of A that correspond

to the eigenvalues λ1, λ2, . . . , λn, then v1,v2, . . . ,vn

are also eigenvectors of exp(A) that correspond to the
eigenvalues eλ1 , eλ2 , . . . , eλn . It is also well known that
the matrix is non-singular.

B. Matrix Exponential LPP

We define SL = XLXT and SD = XDXT , and the eigen
solution formulation of LPP (4) can be rewritten as follows:

min
WTSDW=I

WTSLW (7)

Theorem 1: Let D and N be the dimension of the sample
and the number of the samples,respectively .If D > N , then
the rank of SL is at most N−1 and the rank of SD is at most
N .

Proof: According to the properties of the Laplacian
matrix, it is easy-known that the determinant of L is 0. So,
the rank of L is at most N −1. It is known that the maximum
possible rank of the product of two matrices is smaller than or
equal to the smaller of the ranks of the two matrices. Hence,
rank(SL) = rank(XLXT ) ≤ N − 1. Similarly, we have
rank(SD) ≤ N .

From Theorem 1, LPP also suffers from the SSS problem,
due to the fact that the matrix SL is singular when the SSS
problem incurs. We denote the eigenvectors of SL as VL =
[vL1,vL2, . . . ,vLn] that correspond to the eigenvalues ΛL =
diag(λL1, λL2, . . . , λLn). Similarly, the eigenvectors of SD

are denoted as VD = [vD1,vD2, . . . ,vDn] that correspond to
the eigenvalues ΛD = diag(λD1, λD2, . . . , λDn). The Eq. (7)
can be rewritten as follows:

min
WT (VDΛDVT

D)W=I
WT (VLΛLV

T
L)W (8)

The matrix SL is not a singular, when the SSS problem
incurs. In order to address the problem, the PCA is adopted
to reduce the dimension of the feature space to N − 1, before
applying the standard LPP defined be Eq. (8). Unfortunately,
the valuable information for LPP in the null space of SL

may also be discarded in the PCA step.To extract this kind
of valuable information for LPP, we replace λLi, i.e., the
eigenvalues of SL, by exp(λLi) and λDi, i.e., the eigenvalues
of SD, by exp(λDi). Then, Eq. (8) is transformed into

min
WT (VD exp(ΛD)VT

D)W=I
WT (VL exp(ΛL)V

T
L)W

= min
WT exp(SD)W=I

WT exp(SL)W

(9)

The above equation is the criterion function of Matrix Expo-
nential LPP. According to the properties of the matrix expo-
nential, the exp(SL) is nonsingular. The valuable information
for LPP in the null space of SL can be extracted by Eq. (9).

IV. EXPERIMENTS

A. Database and experimental set

We conducted the experiments on two well-known face
databases Yale1 and Georgia Tech face databases 2.

There are total of 165 gray scale images for 15 individuals
where each individual has 11 images in Yale face database.

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://www.anefian.com/research/face reco.htm



Fig. 1. Sample images of one individual in the YALE database.

Fig. 2. Sample images of one individual from the Georgia Tech database
(non-aligned head images).

The images demonstrate variations in lighting condition, facial
expression (normal, happy, sad, sleepy, surprised, and wink).
The sample images of one individual from the Yale database
are showed in Figure 1.

Georgia Tech face database contains images of 50 indi-
viduals taken in two or three sessions at different times.
Each individual in the database is represented by 15 color
JPEG images with cluttered background taken at resolution
640×480 pixels. The average size of the faces in these images
is 150 × 150 pixels. The pictures show frontal and/or tilted
faces with different facial expressions, lighting conditions and
scale. Each image is manually cropped and resized to 32×32
pixels. The sample images for one individual of the Georgia
Tech database are showed in Fig. 2.

B. Experiments and results on the Yale database

The experiments are conducted on the Yale database. The
similarity matrix S is defined by the heat kernel function.
Empirically, the parameter t is set as the mean norm of the
training set. The neighbors parameter k is searched from
{2, 3, . . . , N − 1}. We randomly split the image samples
so that p (p = 2, 3, 4, 5, 6, 7, 8) images for each individual
are used as the training set and the rest are used as the
testing set. This process is repeated 50 times. Fig. 3 plots
the relationship between the performances of two algorithms
and the neighborhood size k, when p = 2. The warmer color
represents the better performance in the figure. Comparing
the responding columns of Fig. 3(a) and Fig. 3(b), there’s
very little color difference in each column of Fig. 3(a). This
means that the neighborhood size k is less sensitive to the
performance of the proposed algorithm than that of LPP.

In order to investigate the performance of the proposed
algorithm, we implement the proposed algorithm and LPP on
Yale database. The results are also illustrated in Fig. 4. The
solid lines denote that the neighborhood size k is searched
from {2, 3, . . . , N − 1}. The dot-dash lines denote that the k
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Fig. 3. The performances of two algorithms vs. the neighborhood size k on
the Yale database.

is equal to 2. As is shown in Fig. 4, the performances of the
proposed algorithm are better than these of LPP in two ranges
of k. That stems from that the PCA before implementing LPP
discards the valuable information for LPP. Whereas, there is
not the PCA step in the proposed algorithm. It is interesting
that when the training sample size is small, the performance
of the proposed algorithm with k = 2 is better than that of
LPP with k ∈ {2, 3, . . . , N − 1}. That also illustrates that
the proposed algorithm is more effective than LPP for SSS
problem. In Fig. 4, we also find that the margin between
two green lines is much wider than that of red ones. This
also proves the neighborhood size k is less sensitive to the
performance of the proposed algorithm than that of LPP.

C. Experiments and results on the Georgia Tech face database

Georgia Tech face database is more complex than Yale
database, because it contains various pose faces with dif-
ferent expressions on cluttered background. In this experi-
ment, We randomly split the image samples so that p (p =
2, 4, 6, 8, 10, 12) images for each individual are used as the
training set and the rest are used as the testing set. This process
is repeated 30 times. Other setting is the same with Yale
database. We plot the relationship between the performances
and k in Fig. 5 (p = 2). In the figure, we not only see



2 3 4 5 6 7 8
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

The number of training samples

R
ec

og
ni

tio
n 

ac
cu

ra
cy

 (
%

)

 

 

Matrix Exponential LPP k=all
Matrix Exponential LPP k=2
LPP k=all
LPP k=2

Fig. 4. The performances of two algorithms on the Yale database.

the properties in Fig. 3 but also see the fact of that the
better performance of the proposed algorithm occur when k
is small. The experimental results about the performances
also illustrated in Fig. 6. As is shown in the figure, the
properties in Fig. 4 can be seen. Moreover, we also find that
the performance of the proposed algorithm with k = 2 is
better than that of LPP with k ∈ {2, 3, . . . , N − 1}. Matrix
Exponential LPP shows outstanding performance on complex
face databases.

V. CONCLUSION

We have presented a new reduced dimensionality technique,
which is named as Matrix Exponential LPP. It addressed the
two problems of LPP: (1) Small Sample Size problem; (2)the
performance is sensitive to the neighborhood size k. Matrix
Exponential LPP avoids the singular of the matrices and
obtains more valuable information for LPP. The experimental
results prove the performances of Matrix Exponential LPP was
better than that of LPP on two public face databases: Yale and
Georgia Tech.
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