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Abstract: Micro-expression is a subtle, local and brief facial movement. It can reveal the genuine 1

emotions that a person tries to conceal and is considered an important clue for lie detection. The 2

micro-expression research has attracted much attention due to its promising applications in various 3

fields. However, due to the short duration and low intensity of micro-expression movements, micro- 4

expression recognition faces great challenges, and the accuracy still demands improvement. To 5

improve the efficiency of micro-expression feature extraction, inspired by the psychological study 6

of attentional resource allocation for micro-expression cognition, we propose a deep local-holistic 7

network method for micro-expression recognition. Our proposed algorithm consists of two sub- 8

networks. The first is a Hierarchical Convolutional Recurrent Neural Network (HCRNN), which 9

extracts the local and abundant spatio-temporal micro-expression features. The second is a Robust 10

principal component analysis-based recurrent neural network (RPRNN), which extracts global and 11

sparse features with micro-expression-specific representations. The extracted effective features 12

are employed for micro-expression recognition through the fusion of sub-networks. We evaluate 13

the proposed method on combined databases consist of four most commonly used databases, i.e., 14

CASME, CASME II, CAS(ME)2, and SAMM. The experimental results show that our method achieves 15

a reasonably good performance. 16

Keywords: Hierarchical Convolution; Local-Holistic; micro-expression recognition; Robust Principal 17

Component Analysis 18

1. Introduction 19

Facial micro-expression (micro-expression) is an involuntary and momentary facial ex- 20

pression, with a brief duration of less than 500ms [1]. It reflects one’s genuine emotions that 21

people are trying to conceal. In contrast to ordinary facial expressions, micro-expression is 22

consciously suppressed, but unconsciously leaked. Moreover, it has the two distinguishing 23

features of short duration and low intensity. Compared to polygraph instruments that 24

require equipment, micro-expression-based lie detection is unobtrusive, and individuals are 25

less likely to counteract it. Therefore, micro-expressions have many potential applications 26

in many fields, such as clinical diagnosis [2] and national security [3]. 27

micro-expression is difficult to detect through the naked eye and requires a trained 28

professional to recognize [2]. In order to help people recognize micro-expression, Ekman 29

et al. developed the Facial Action Coding System (FACS) [4] and defined the muscle 30

activity of facial expressions as action units (AU). Meantime, they also developed the 31

micro-expression Training Tool (micro-expressionTT) [5]. Since then, micro-expression 32

has received increasing attention from researchers. However, micro-expression analysis 33

through humans is still very challenging, and many researchers have tried to develop 34

micro-expression auto-recognition methods by employing computer vision techniques. 35

Since 2013, Xiaolan Fu’s group has built three spontaneous micro-expression databases: 36
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CASME I [6], CASME II [7], CAS(ME)2 [8]. In 2016, Davison et al. released the Spontaneous 37

Actions and Micro-Movements (SAMM) [9] dataset with demographical diversity. 38

Based on these published databases, research on micro-expression recognition has been 39

gradually developed. There are two main types of approaches, i.e., recognition methods 40

based on handcraft features and methods based on deep learning feature extraction. Due 41

to the brief, subtle, and localized nature of micro-expressions, it is challenging for both 42

handcrafted features and features obtained based on deep learning to fully represent 43

micro-expressions. In addition, since the collection and labeling of micro-expressions are 44

time-consuming and laborious, the total number of published micro-expression samples 45

is about 1000. Therefore, micro-expression recognition is a typical small sample size (SSS) 46

problem. The sample size greatly limits the application of deep learning in this area. First, 47

deep network models involve a large number of parameters, and training on a small 48

micro-expression sample may cause overfitting problems of the model. Moreover, the 49

number of samples in the model and the network parameters are affected by the SSS 50

problem compared with the algorithms for expression recognition. Furthermore, due to 51

the complicated characterization of micro-expressions themselves, even methods such as 52

transfer learning with sample pre-training on other large-scale data sets do not achieve 53

satisfactory results cannot be applied to practical applications. 54

To address the problem that micro-expression features are difficult to learn in deep 55

networks under small sample problems, we explored the psychological cognitive attention 56

mechanism. As shown in Fig. 1, the process of individual cognitive micro-expressions 57

moves from global cognition to local-focused attention and finally to global decision mak- 58

ing [10]. Inspired by this theory, we propose a Deep Local-Holistic Network (DLHN) with 59

enhanced micro-expression feature extraction capability for micro-expression recognition. 60

The architecture of the proposed method mainly includes two sub-networks: (1) a hierar- 61

chical convolutional recurrent network (HCRNN), learning local and abundant features 62

from original frames of micro-expression video clips. (2) a robust principal component 63

analysis recurrent network (RPRNN), extracting sparse information from original frames 64

of micro-expression video clips by RPCA, and then feeding the sparse information to a 65

deep learning model to extract holistic and sparse features. The two networks are trained 66

separately and then fused for micro-expression recognition. 67

Figure 1. Global (green clipping head) and local area of interest (yellow arrow) tracking of micro-
expression action. (Sample from SAMM dataset)

The rest of this paper is organized as follows: Section 2 reviews the related works on 68

micro-expression recognition and basic models applied in our method; Section 3 introduces 69

our proposed algorithm in detail; Section 4 presents the experimental results; and Section 5 70

concludes the article. 71

2. Related Works and Background 72

73
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This section first introduces the related works on micro-expression recognition, then 74

briefly describes three algorithms as they are employed in our proposed method, includ- 75

ing deep convolutional neural network, recurrent neural network, and Robust Principal 76

Component Analysis. 77

2.1. micro-expression Recognition 78

In the early stages of the study, most methods adopt handcrafted features to identify 79

micro-expressions. Polikovsky et al. [11] divided the face into specific regions and recog- 80

nized the motion in each region by 3D-Gradients orientation histogram descriptor. Tomas 81

Pfister et al. [12] designed the first spontaneous micro-expression database (SMIC) and used 82

LBP-TOP [13] to extract dynamic and appearance features of micro-expressions. Wang 83

et al. [14] adopted robust Principal Component Analysis (RPCA) [15] to extracted sparse 84

micro-expression information and Local Spatiotemporal Directional Features. Wang et al. 85

introduced a discriminant tensor subspace analysis (DTSA) [16] to preserve the spatial struc- 86

ture information of micro-expression images. Furthermore, they treated micro-expression 87

video clip as a fourth-order tensor and transformed the color information from RGB into 88

TICS to improve the performance [17]. Huang et al. [18] show a spatiotemporal facial repre- 89

sentation to characterize facial movements and used LBP to extract appearance and motion 90

features. Liu et al. [19] proposed a simple, effective Main Directional Mean Optical-flow 91

features (MDMO) and adopted SVM classifier to recognize micro-expression. Huang et 92

al. [20] analyzed micro-expression by proposing SpatioTemporal Completed Local Quanti- 93

zation Patterns (STCLQP), which exploits magnitude and orientation as complementary 94

features. The above recognition methods are not capable enough to capture subtle facial 95

displacements. This is due to the constant movement of the observed individual, which is 96

common in typical micro-expression applications. Addressing this problem, Xu et al. [21] 97

proposed a Facial Dynamics Map method with depicting micro-expression characteristics 98

from different granularity. Wang et al. [22] proposed a Main Directional Maximal Difference 99

micro-expression recognition method (MDMD), extracting optical flow features from the 100

region of interest (ROIs) based on action units. 101

Recently, the outstanding performance of deep learning attracts the attention of many 102

researchers to develop micro-expression recognition algorithms. Patel et al. [23] used the 103

pre-trained ImageNet-VGG-f CNN to extract features of each frame in micro-expression 104

video clips. Wang et al. [24] proposed a Transferring Long-term Convolutional Neural 105

Network (TLCNN) method, which uses Deep CNN to extract spatial features per frame 106

and Long Short Term Memory (LSTM) to learn micro-expression temporal information. 107

Xia et al. [25] investigated a low-complexity recurrent convolutional neural network (RCN) 108

based on cross-database micro-expression recognition. Li et al. [26] performed a joint local 109

and global information learning on apex frame for micro-expression recognition. Zhou 110

et al. [27] proposed an expression-specific feature learning and fusion method for micro- 111

expression recognition However, the small sample size of micro-expression samples and 112

the subtle and brief nature of micro-expression limit the combination of deep learning with 113

micro-expression recognition methods. Thus, how to learn the micro-expression features 114

effectively is necessary research for further performance improvement. 115

2.2. Deep Convolutional Neural Network 116

Deep Convolutional neural network (DCNN) is a hierarchical machine learning 117

method containing multilevel nonlinear transformations. It is a classic and widely used 118

structure with three prominent characteristics: local receptive fields shared weights and 119

spatial or temporal subsampling. These features reduce temporal and spatial complexity 120

and allow some degree of shift, scale, and distortion invariance when designed to process 121

still images. It has been shown to outperform many other techniques [28]. 122

As introduced in Section 1, the handcraft micro-expression features are not sufficiently 123

representational. Hence, we apply DCNN to improve the discriminative ability for micro- 124

expression by targeting learning in local regions where micro-expressions frequently occur. 125
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2.3. Recurrent Neural Network 126

Recurrent neural network (RNN) can be used to process sequential data through 127

mapping an input sequence to a corresponding output sequence, using the hidden states. 128

However, as the network gradually deepens, there will be problems of gradient disappear- 129

ance and gradient explosion. To solve this problem, Long Short-Term Memory (LSTM) 130

architecture was proposed [29] which uses memory cells with multiplicative gate units to 131

process information. It has been shown to outperform RNN on learning long sequences. 132

Besides, RNN takes into account only the past context. To solve the problems, a 133

bidirectional RNN (BRNN) is created [30], which can process data in both past and future 134

information. Subsequently, Graves et al. [31] proposed a bidirectional LSTM (BLSTM), 135

which has better performance than LSTM on processing long contextual information of 136

complex temporal dynamics. 137

Since micro-expressions are very subtle, it isn’t easy to distinguish them from neutral 138

faces just by a single frame. The movement pattern in the temporal sequence is an essential 139

feature for micro-expressions. Therefore, we extract the temporal features from micro- 140

expression sequence based on BRNN and BLSTM to enhance the classification performance. 141

2.4. Robust Principal Component Analysis 142

Donoho et al. [32] demonstrated that the observed data could be separated efficiently
and exactly into sparse and low-rank structures in high-dimensional spaces. Then, an
idealized “robust principal component analysis” problem is proposed to recover a low-rank
matrix A from highly corrupted measurements D:

D = A + E (1)

Where A is the deserved data in a low-rank subspace, and E is the error term, usually 143

treated as noise. 144

According to the characteristic of micro-expression with short duration and low 145

intensity, micro-expression data are sparse in both the spatial and temporal domains. In 146

2014, Wang et.al. [17] proposed E as the deserved subtle motion information of micro- 147

expression and A as noise for micro-expression recognition. Inspired by this idea, we 148

adopt RPCA to obtain sparse information from micro-expression frames, and then feed 149

the extracted information to RPRNN which learns sparse and holistic micro-expression 150

features. 151

3. Our Model 152

As illustrated in Fig. 2, our proposed Deep Local-Holistic Network (DLHN) consists 153

of HCRNN and RPRNN. HCRNN extracts the local and abundant spatial-temporal micro- 154

expression features by concatenating modified CNN and BRNN modules. Meanwhile, 155

RPRNN learns the holistic sparse micro-expression features through the combination of 156

RPCA and a deep BLSTM. Finally, two sub-networks are fused to improve the performance 157

of micro-expression recognition. 158
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Figure 2. Our proposed Deep Local-Holistic Network. (1) The local network, i.e., HCRNN. The facial
micro-expression image is divided into four regions of interest and then fed into four hierarchical
CNN modules to extract local-still features. In addition, local dynamic features are learned by the
BRNN module. (2) The holistic network, i.e., RPRNN. RPCA is employed to obtain sparse micro-
expression images, which are then used as the input to the RPRNN. A deep BLSTM network created
by multiple hidden layers is applied to learn the holistically sparse features.

3.1. HCRNN for Local Features 159

As illustrated in the top block of Fig. 2, the HCRNN Model is constructed by CNN 160

Module and BRNN Module. First, CNN Module contains four hierarchical CNNs (HCNNs) 161

to extract local features from ROIs. Then, BRNN Module learns the temporal correlation in 162

the local features. Finally, the category of micro-expression is predicted by a fully connected 163

(FC) layer. 164

3.1.1. CNN Module 165

According to the facial physical structure, only four facial regions of interest (ROIs), 166

i.e., eyebrows, eyes, nose, mouth, are used for the local micro-expression feature extraction 167

(Fig. 3a). First, the gray-scale micro-expression frames are cropped and normalized with a 168

size of 112×112. Then the ROIs are determined based on facial landmarks. The ROI size 169

of eyebrows, eyes, nose and mouth are 112 ×33, 112×20, 56×32, 56×38, respectively. Fur- 170

thermore, considering the integrity of each ROI, the adjacent ROIs may have overlapping 171

portions. 172

As shown in the HCRNN bock of Fig. 2, the structure of CNN module consists of four 173

HCNNs. For each branch, the input is the ROI gray-scale images, and the network contains 174

four convolutional layers. All four HCNNs have the same structure, as listed in Table 1. 175

The output sizes in the table refer to generated tensor shapes by four HCNN. The CNN 176

module is able to extract local spatial micro-expression features. For a better visualization, 177

Fig. 3b presents the feature maps of L4 in HCRNN. 178
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(a) Four facial ROIs (b) ROI feature maps

Figure 3. ROIs based on eyebrows, eyes, nose and mouth, and the corresponding feature maps of L4
in HCRNN.

Table 1. The HCNN structure

Type Kernel size Stride Output size

convolution 3 × 3 × 70 1 112 × 33/112 ×
20/56 × 32/56 × 38

max pool 2 × 2 2 56 × 16/56 × 10/28 ×
16/28 × 19

convolution 3 × 3 × 140 1 56 × 16/56 × 10/28 ×
16/28 × 19

max pool 2 × 2 2 28 × 8/28 × 5/14 ×
8/14 × 9

convolution 3 × 3 × 280 1 28 × 8/28 × 5/14 ×
8/14 × 9

max pool 2 × 2 2 14 × 4/14 × 2/7 ×
4/7 × 4

convolution 3 × 3 × 560 1 14 × 4/14 × 2/7 ×
4/7 × 4

3.1.2. BRNN Module 179

In a micro-expression sequence, the past context and future context usually are useful
for prediction. Thus, a BRNN module [33] is adopted to process micro-expression temporal
variation. The number of neurons in each layer of BRNN Module is listed as follows:
L5(30 × 4)-L7(60 × 3)-L8(60 × 3)-L10(90 × 2)-L11(90 × 2)-L12(80 × 1). First, the extracted
ROI features from CNN module are fed into BRNN module in L5 layer. Then, local temporal
information is concatenated in L6 layer and subsequently processed by two BLSTMs in L7
layers (See BRNN structure in Fig. 4). Similar steps of L6 and L7 are repeated in L8 and L9
layers. A global temporal feature is obtained through the concatenation in L10 layer and
the BLSTM in L11 layer. We classify micro-expression by an FC layer in L12 of HCRNN
and obtain probabilistic outputs by softmax layer in L13 of HCRNN:

P(hi) =
ehi

∑n−1
k=0 ehk

(2)

where hi is the output of L13, i is the output unit, where i = 0, 1, ...k. Finally, the HCRNN is
trained by using the cross-entropy loss function:

HLoss = −∑
j

cj · log
(
P
(
hj
))

(3)

where cj is the ground truth, P
(
hj
)

is the predicted probability of output layer. 180



Version May 18, 2022 submitted to Appl. Sci. 7 of 15

Figure 4. General structure of BRNN. xt is input data in t time. yt is output data in t time. hp
t and hn

t
represent the hidden state in positive and negative directions, respectively.

3.2. RPRNN for Holistic Features 181

3.2.1. Input: Sparse micro-expression Obtained by RPCA 182

Due to the short duration and low intensity of micro-expression movement, micro-
expression could be considered as sparse data. Hence, RPCA [15] is utilized to obtain
sparse micro-expression information. In details, for a gray-scale video clip V(h × w × n),
where h and w is respectively the pixels height and width of each frame, n is the number
of frames. We stack all frames as column vectors of a matrix D with h × w rows and n
columns. It can be formulated as follows:

min
A,E

rank(A) + ∥E∥0 subject to D = A + E (4)

where A is a low-rank matrix, B is a sparse matrix, rank(·) is the rank of the matrix and
∥ · ∥0 denotes ℓ0 -norm which obtains the number of nonzero elements in the matrix. This
is a non-convex function. Wright et al. adopted the ℓ1 -norm as a convex surrogate for the
highly-nonconvex ℓ0 -norm and the nuclear norm (or sum of singular values) to replace
non-convex low-rank matrix, i.e., the following convex optimization problem:

min
A,E

∥A∥∗ + λ∥E∥1 subject to D = A + E (5)

where ∥ · ∥∗ denotes nuclear norm, ∥ · ∥1 denotes ℓ1 -norm which counts the sum of all 183

elements in matrix, and λ is a positive weighting parameter (λ > 0). Lin et al.[34] proposed 184

the Augmented Lagrange Multiplier Method (ALM), which includes two algorithms of 185

exact ALM and inexact ALM to process linearly constrained convex optimization problems. 186

The inexact ALM has a slight improvement in the required number of partial SVDs than the 187

exact ALM and has the same convergence speed as the exact ALM. Benefiting from it, we 188

adopt the method of inexact ALM to obtain sparse micro-expression motion information 189

from original frames. 190
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3.2.2. RPRNN Architecture 191

The obtained sparse micro-expression images are fed into RPRNN to extract holistic
features. The architecture of RPRNN is shown at the bottom block in Fig. 2. In order to
learn high-level micro-expression representations, a deep BLSTM network is created by
multiple LSTM hidden layers. The holistically sparse features are extracted in the L1 of
RPRNN, and two FC layers are used to classify micro-expressions. Then, the emotion type
of micro-expression is estimated by the softmax layer:

P(ri) =
eri

∑C−1
k=0 erk

(6)

where ri is an output of the softmax layer. Finally, to avoid the overfitting problem, we
combine the cross-entropy loss function with L2 Regularization:

RLoss = −∑
j

cj · log
(
P
(
rj
))

+
n

∑
c=1

θ2
c (7)

where P(ri) is the predicted probability of output layer, θ index to weight values. 192

3.3. Model Fusion 193

In the final stage of our proposed Deep Local-Holistic Network, HCRNN and RPRNN
are fused by the following function:

O(xi) = aPhi(xi) + (1 − a)Pri(xi) (8)

where a is weight value, Phi and Pri are the predicted probabilities in HCRNN and RPRNN. 194

According to the experiment result, we find that the model can achieve the best performance 195

when a equals 0.45. Thus, we set a to 0.45. 196

4. Experiments 197

4.1. Databases and Protocols 198

We use the datasets combined of four spontaneous micro-expression databases (CASME
I, CASME II, CAS(ME)2, and SAMM) to assess the performance of our models. Table 2
presents the details of these four databases. However, the number of emotion classes
number is different in these databases, and micro-expression samples are labeled by taking
different AUs criteria. For example, the combination of AU1 and AU2 defines a micro-
expression sample as disgust in CAS(ME)2 and as surprise in CASME II. In order to alleviate
the impact of the different encoding, we adopt a uniformly AU encoding criterion proposed
by Davison et al. [35]. Finally, we select 560 samples from the combined dataset and divide
them into four emotion labels:

emotions = {Positive, Negative, Surprise, Others} (9)

Specifically, Negative Consists of anger, disgust, sadness, and fear. Fig.7a shows the sample 199

size of each emotion category. In our experiments, we use 10-fold cross-validation protocol 200

on our combined dataset. 201

Table 2. Four spontaneous micro-expression databases. FPS: Frames per second

Database Sample size Emotions class FPS label

CASME I 195 8 60 emotion/AUs
CASME II 247 5 200 emotion/AUs
CAS(ME)2 57 4 30 emotion/AUs

SAMM 159 7 200 emotion/AUs
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4.2. Preprocessing and Parameter Configuration 202

Since the length of each video sample varies, we performed linear interpolation and 203

extracted 16 frames from it for the subsequent recognition task. The size of the face image 204

is 112 × 112. For HCRNN, the face region is divided into four ROIs as the input of CNN 205

module. To guarantee the integrity of each part, ROIs have overlapping areas, and the size 206

of brow, eye, nose, mouth regions are 112 × 33, 112 × 20, 56 × 32, and 56 × 38, respectively. 207

The convolution kernel size of HCNN is set to 3 × 3, and the size of the pooling kernel is 208

2 × 2. The stride of convolution and pooling layer is set as 1 and 2. In the training stage, the 209

learning rate adopts exponential decay with that the initial value equals 0.85 . We update 210

all weights in each iteration with mini-batch samples whose size is 45. The iteration curves 211

in Fig. 5a respectively represent the trend of loss and accuracy value in the testing set. 212

For RPRNN, the original micro-expression frames are processed by RPCA to obtain the 213

sparse micro-expression images. Fig. 6 illustrates an example of micro-expression images 214

processed by RPCA. Then the sparse images are fed to RPRNN to obtain holistic features. 215

In the model, the attenuation way of learning rate and the update mode of weights are the 216

same as HCRNN, and the value of the learning rate is initialized to 0.01. Same as HCRNN, 217

in the training stage, we update all weights in each iteration. Fig.5b plots the iteration 218

curves representing the trend of loss and accuracy value in the testing set. In the whole 219

experiment, we employ a truncated normal distribution with zero mean and a standard 220

deviation of 0.1 to initialize weights, and initialize biases as 0.1. 221
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Figure 5. Network iteration curves

4.3. Results 222

Our proposed DLHN consists of HCRNN and RPRNN. As introduced in Section 3.3, 223

these two sub-networks are combined by parameter a. We choose different a to evaluate the 224

results of the fusion network and conduct our experiments with 10-fold cross-validation. 225

Table 3 show micro-expression recognition accuracy of the fusion network with different 226

parameter a. It can be seen that when a equals 0.45, the average accuracy of the fusion 227

network is the highest. Therefore a is set as 0.45 when we compare the performance of the 228

proposed DLHN with current state-of-the-art (SOTA) methods in the combined dataset. 229
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 6. An example of RPCA on micro-expression images. Fig. 6a-6e are the original micro-
expression images. Fig. 6f-6j are the corresponding extracted sparse information. Fig. 6k-6o are the
enhanced display for Fig. 6f-6j by multiplying each pixels with 2.

Table 3. Facial micro-expression recognition accuracy (%) of our proposed DLHN with different
parameter a in 10-fold cross-validation dataset

a 0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9

Fold1 55.38 52.31 55.38 53.85 53.85 58.46 58.46 56.92 55.38 53.85
Fold2 66.15 64.62 69.23 70.77 70.77 70.77 69.23 67.69 63.08 63.08
Fold3 60 60 61.54 61.54 61.54 63.08 61.54 63.08 60 58.46
Fold4 61.54 63.08 63.08 66.15 66.15 64.62 66.15 66.15 64.62 63.08
Fold5 56.92 56.92 55.38 60 60 58.46 58.46 58.46 56.92 56.92
Fold6 63.08 63.08 64.62 63.08 64.62 63.08 58.46 61.54 61.54 60
Fold7 55.38 53.85 52.31 53.85 47.69 41.54 41.54 41.54 41.54 41.54
Fold8 60 58.46 60 60 58.46 58.46 53.85 52.31 50.77 52.31
Fold9 52.31 52.31 52.31 53.85 53.85 56.92 53.85 53.85 56.92 56.92

Fold10 63.08 63.08 63.08 61.54 60 61.54 52.31 52.31 52.31 52.31
Mean 59.385 58.769 59.692 60.308 60.309 60.308 57.385 57.385 56.308 55.847

In the choice of comparison methods, among the handcraft feature-based methods, 230

we choose the classical FDM features and LBP features [36], as well as the variant of LBP 231

features (LBP-SIP) [37]. Among the deep learning methods, we choose the first place 232

method for Micro-Expression Grand Challenge 2019 and two deep learning-based methods 233

with codes released in the last two years, which are STSTNet [38], RCN(_a,_w,_s, and _f) [25] 234

and Feature Refinement (FR) [27], respectively. Moreover, we all reproduced these methods 235

with the same data configuration. Table 4 shows the overall accuracy of all algorithms. 236

The best algorithm based on traditional methods for micro-expression recognition is LBP- 237

TOP(4 × 4), which achieves 58.38% mean accuracy. The mean accuracy of HCRNN and 238

RPRNN is respectively 55.08% and 59.53%. The fusion model, i.e., DLHN obtains the best 239

performance by combined local abundant features extracted by HCRNN and holistic sparse 240

features extracted by RPRNN and achieves 60.31% mean accuracy. Besides, RPRNN obtain 241

the best performances in three folds (fold7, fold8, and fold10), which demonstrate that the 242

efficiency of holistic sparse spatio-temporal feature extraction capacity of RPRNN. 243
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Table 4. The overall accuracy (%) of DLHN and other SOTA methods. LBP1, LBP2, LBP3 and LBP4

reprensent LBP-TOP(2 × 2), LBP-TOP(4 × 4), LBP-SIP(2 × 2) and LBP-SIP(4 × 4) respectively.

Method Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Mean

FDM+SVM 36.92 41.54 52.31 43.08 33.85 43.08 43.08 52.31 33.85 50.77 43.08
LBP1+SVM 55.38 52.31 50.77 56.92 58.46 47.69 53.85 55.38 56.92 53.85 53.85
LBP2+SVM 66.15 58.46 64.62 58.46 63.08 58.46 49.23 52.31 61.54 61.54 58.38
LBP3+SVM 55.38 58.46 58.46 53.85 46.15 50.77 43.08 58.46 58.46 53.85 43.08
LBP4+SVM 60 55.38 41.54 49.23 60 47.69 46.15 55.38 55.38 49.23 46.15
STSTNet 46.15 60.00 58.46 55.38 50.77 53.85 50.77 49.23 52.31 55.38 53.23
RCN_w 47.69 61.54 53.85 52.31 49.23 56.92 46.15 58.46 55.38 53.85 53.54
RCN_s 38.46 63.08 49.23 56.92 46.15 53.85 46.15 55.38 60.00 36.92 50.61
RCN_a 35.38 61.54 47.69 61.54 46.15 46.15 49.23 64.62 47.69 36.92 49.69
RCN_f 46.15 72.31 56.92 53.85 46.15 50.77 53.85 50.77 58.46 47.69 53.69

FR 46.15 61.54 58.46 66.15 61.54 56.92 50.77 44.62 56.92 56.92 56.00
HCRNN 53.85 63.08 58.46 63.08 56.92 56.92 40 52.31 55.38 50.77 55.08
RPRNN 56.82 64.62 60 61.54 56.92 60 56.92 60 56.92 61.54 59.53
DLHN 53.85 70.77 61.54 66.15 60 64.62 53.85 58.46 53.85 60 60.31

Furthermore, Fig. 7b illustrates the confusion matrix of our proposed DLHN based on 244

four emotion categories. According to Fig. 7a, "negative" and "other" have more samples 245

than "positive" and "surprise". Therefore, the recognition accuracy of "negative" and "other" 246

is higher than the other two categories. 247
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Figure 7. micro-expression recognition performance analysis of DLHN per emotion

5. Conclusion 248

In this paper, we proposed a Deep Local-Holistic Network for micro-expression 249

recognition. Specifically, HCRNN is designed to extract local and abundant information 250

from the ROIs related to micro-expression. According to the sparse characteristic of micro- 251

expression, we obtain sparse micro-expression information from original images by RPCA, 252

and utilize RPRNN to extract holistic and sparse features from sparse images. Deep 253

Local-Holistic Network, which fused by HCRNN and RPRNN, captures the local-holistic, 254

sparse-abundant micro-expression information, and boosts the performance of micro- 255

expression recognition. Experimental results on combined databases demonstrate that our 256

proposed method outperforms some state-of-the-art algorithms. 257
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The recognition performance of DLHN remains to be improved due to the limitation 258

of the small sample problem and unbalanced sample distribution. In future work, we 259

will further investigate unsupervised learning as well as data augmentation methods to 260

improve the performance of micro-expression recognition. 261
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