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In this paper, we present an effective and efficient diagnosis system using fuzzy k-nearest neighbor
(FKNN) for Parkinson’s disease (PD) diagnosis. The proposed FKNN-based system is compared with the
support vector machines (SVM) based approaches. In order to further improve the diagnosis accuracy
for detection of PD, the principle component analysis was employed to construct the most discriminative
new feature sets on which the optimal FKNN model was constructed. The effectiveness of the proposed
system has been rigorously estimated on a PD data set in terms of classification accuracy, sensitivity,
specificity and the area under the receiver operating characteristic (ROC) curve (AUC). Experimental
results have demonstrated that the FKNN-based system greatly outperforms SVM-based approaches
and other methods in the literature. The best classification accuracy (96.07%) obtained by the FKNN-
based system using a 10-fold cross validation method can ensure a reliable diagnostic model for detection
of PD. Promisingly, the proposed system might serve as a new candidate of powerful tools for diagnosing
PD with excellent performance.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Parkinson’s disease (PD) is one kind of degenerative diseases of
the nervous system, which is characterized by a group of condi-
tions called motor system disorders because of the loss of
dopamine-producing brain cells. Primary symptoms of PD include
tremor, or trembling in hands, arms, legs, jaw, and face; rigidity, or
stiffness of the limbs and trunk; bradykinesia, or slowness of
movement; and postural instability, or impaired balance and coor-
dination. PD usually affects people over the age of 50, which has
influenced a large part of worldwide population up to now
(http://www.ninds.nih.gov/disorders/parkinsons_disease/parkin-
sons_disease.htm, last accessed: April 2012). Till now, the cause of
PD is still unknown, however, it is possible to alleviate symptoms
significantly at the onset of the illness in the early stage (Singh, Pillay,
& Choonara, 2007). It is claimed that approximately 90% of the
patients with PD show vocal impairment (Ho, Iansek, Marigliani,
Bradshaw, & Gates, 1998), the patients with PD typically exhibit
ll rights reserved.
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a group of vocal impairment symptoms, which is known as
dysphonia. The dysphonic indicators of PD make speech measure-
ments an important part of diagnosis. Recently, dysphonic mea-
sures have been proposed as a reliable tool to detect and monitor
PD (Little, McSharry, Hunter, Spielman, & Ramig, 2009; Rahn, Chou,
Jiang, & Zhang, 2007).

Previous study on the PD problem has been undertaken by var-
ious researchers. Little et al. (2009) conducted a remarkable study
about PD identification, they employed an Support Vector Machine
(SVM) classifier with Gaussian radial basis kernel functions to pre-
dict PD, and also performed feature selection to select the optimal
subset of features from the whole feature space, and the best accu-
racy rate of 91.4% was obtained by the best model. Shahbaba and
Neal (2009) introduced a new nonlinear model based on Dirichlet
process mixtures for classification of PD, the results have been
compared with that of multinomial logit models, decision trees,
and SVM, the best classification accuracy of 87.7% was obtained
by the proposed approach. Das (2010) presented a comparative
study of using Neural Networks (ANN), DMneural, Regression
and Decision Tree for effective diagnosis of PD, the experimental
results have shown that the ANN classifier yielded the best results,
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the overall classification score of 92.9% was achieved. Sakar and
Kursun (2010) used the mutual information based feature selec-
tion methods integrated with the SVM classifier for PD diagnosis,
and the classification accuracy of 92.75% was achieved. Psorakis,
Damoulas, and Girolami (2010) introduced novel convergence
measures, sample selection strategies and model improvements
for multiclass multi-kernel relevance vector machines (mRVMs),
and finally, the improved mRVMs achieved the classification
accuracy rate of 89.47% when applied to prediction of PD. Guo,
Bhattacharya, and Kharma (2010) combined genetic programming
and the expectation maximization algorithm (GP-EM) to detect PD,
and the best classification accuracy of 93.1% was obtained. Re-
cently, Luukka (2011) employed the feature selection method
based on fuzzy entropy measures together with the similarity clas-
sifier to predict PD, and mean classification accuracy of 85.03%
with only two features was obtained. Li, Liu, and Hu (2011) pro-
posed a fuzzy-based non-linear transformation method in combi-
nation with the SVM classifier for prediction of PD, and the best
classification accuracy of 93.47% was achieved. Ozcift and Gulten
(2011) combined the correlation based feature selection (CFS)
algorithm with the rotation forest (RF) ensemble classifiers of 30
machine learning algorithms to identify PD, and the best classifica-
tion accuracy of 87.13% was achieved by the proposed CFS-RF mod-
el. AStröm and Koker (2011) proposed a parallel feed-forward
neural network structure for prediction of PD, the highest classifi-
cation accuracy of 91.20% was obtained. Spadoto et al. (2011) ap-
plied evolutionary-based techniques in combination with the
Optimum-Path Forest (OPF) classifier to detect PD, and the best
classification accuracy of 84.01% was achieved.

From these works, we can see that most of the common classi-
fiers from machine learning community have been utilized for
diagnosis of PD. It is evident that the choice of an excellent classi-
fier is of significant importance to the PD diagnosis problem. In this
study, an attempt is made to investigate the fuzzy k-nearest neigh-
bor (FKNN) classifier in constructing an automatic diagnostic sys-
tem for diagnosis of PD. Compared with ANN and SVM, FKNN as
an improvement over the standard KNN classifier is much simpler
and more easily interpretable while maintaining the acceptable
classification accuracy. The main idea behind FKNN (Keller, Gray,
& Givens, 1985) is that it uses concepts from fuzzy logic to assign
degree of membership to different classes while considering the
distance of its k-nearest neighbors. Points closer to the query point
contributes larger value to be assigned to the membership function
of their corresponding class in comparison to far away neighbors.
Class with the highest membership function value is taken as the
winner. One unique characteristic of FKNN method is that it can as-
sign a confidence degree for each predicted class. Thanks to its
good properties, it has found its application in a wide range of clas-
sification tasks such as protein subcellular locations prediction
(Huang & Li, 2004), protein solvent accessibility prediction (Sim,
Kim, & Lee, 2005), hyperspectral satellite image classification (Yu,
De Backer, & Scheunders, 2002), manufacturing applications
(Warren Liao & Li, 1997), bankruptcy prediction (Chen et al., 2011a,
2011b), medical diagnosis (Liu et al., 2011; Seker, Odetayo, Petro-
vic, & Naguib, 2003) and so on. To the best of our knowledge, FKNN
has not been examined for PD diagnosis although it has been used
frequently for the classification of biological and medical data.
Aiming at improving the efficiency and effectiveness of the classi-
fication accuracy for PD diagnosis, in this study, a diagnosis system
based on FKNN classifier is introduced. The rationale underlying
the proposed system is firstly to use principle component analysis
(PCA) to eliminate the redundant information in the original PD
data, then to train an optimal FKNN model whose parameters are
identified by the cross validation (CV) analysis on the reduced fea-
ture space. Finally, the optimal model is utilized to perform the PD
diagnostic tasks. The effectiveness of the proposed system is exam-
ined in terms of the classification accuracy, sensitivity, specificity
and AUC on the PD data set taken from UCI machine learning
repository. Promisingly, as can be seen that the developed diagno-
sis system for this data set in which a more reliable result is found
(96.07% mean accuracy) by 10-fold CV method.

The remainder of this paper is organized as follows. Section 2
offers brief background knowledge on FKNN. The detail of imple-
mentations of the FKNN-based diagnosis system is described in
Section 3. In the next section, the detailed experimental design is
presented, and Section 5 describes all the empirical results and dis-
cussion. Finally, Conclusions and future work are summarized in
Section 6.
2. Fuzzy k-nearest neighbor method

The k-nearest neighbor (KNN) is one of the oldest and simplest
non-parametric pattern classification methods (Cover & Hart,
1967), in which a class is assigned according to the most common
class amongst its k-nearest neighbors. As an improved version of
the KNN method, FKNN (Keller et al., 1985) incorporates the fuzzy
set theory into KNN. In FKNN, rather than individual classes as in
KNN, the fuzzy memberships of samples are assigned to different
categories according to the following formulation:

uiðxÞ ¼
Pk

j¼1uijð1=kx� xjk2=ðm�1ÞÞPk
j¼1ð1=kx� xjk2=ðm�1ÞÞ

; ð1Þ

where i = 1,2, . . . ,C, and j = 1,2, . . . , ,k, with C number of classes and k
number of nearest neighbors. The fuzzy strength parameter m is
used to determine how heavily the distance is weighted when cal-
culating each neighbor’s contribution to the membership value, and
its value is usually chosen as m 2 (1,1). kx � xjk is the distance be-
tween x and its jth nearest neighbor xj, usually Euclidean distance is
chose as the distance metric. uij is the membership degree of the
pattern xj from the training set to the class i, among the k nearest
neighbors of x. There are two ways to define uij, one way is the crisp
membership, i.e., each training pattern has complete membership
in their known class and non-memberships in all other classes.
The other way is the constrained fuzzy membership, i.e., the k near-
est neighbors of each training pattern (say xk) are found, and the
membership of xk in each class is assigned as:

uijðxkÞ ¼
0:51þ ðnj=KÞ�0:49; if j ¼ i;
ðnj=KÞ�0:49; if j–i:

�
ð2Þ

The value nj is the number of neighbors found which belong to the
jth class. Note that, the memberships calculated by Eq. (2) should
satisfy the following equations:

XC

I¼1

lij ¼ 1; j ¼ 1;2; . . . ;n;

0 <
Xn

j¼1

uij < n;

uij 2 ½0;1�:

ð3Þ

In our preliminary experiments, we have found that the second way
leads to better classification accuracy. After calculating all the
memberships for a query sample, it is assigned to the class with
which it has the highest membership value, i.e.,

CðxÞ ¼ arg max
C

i¼1
ðuiðxÞÞ ð4Þ

The details of the FKNN algorithm are presented in Algorithm 1.
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Algorithm 1. The FKNN algorithm.

Input: The training set X with the labeled patterns
{xiji = 1,2, . . . ,n} and the test pattern y.

Output: Class label of y and confidence for each class label.
Step 1: For i = 1,2, . . . , to n

Step 2: Compute the distance from xi to y using the Euclid-
ean distance;
Step 3: If i 6 k
Step 4: Include xi in the set of k nearest neighbors;
Step 5: Else If (xi is closer to y than any previous nearest
neighbors)
Step 6: Delete the farthest of the k nearest neighbors;
Step 7: Include xi in the set of k nearest neighbors;
Step 8: End If
Step 9: End for
Step 10: For c = 1 to C
Step 11: Compute ui(x) using Eq. (1);
Step 12: End For
Step 13: Crisp class label of y is assigned to the class with
which it has the highest membership value using Eq. (4).
Fig. 1. Overall procedure of the propos
3. The proposed diagnosis system
In this section, we describe the proposed FKNN-based diagnosis
system. The proposed approach is comprised of two stages as
shown in Fig. 1. In the first stage, feature reduction is conducted
by using PCA to eliminate the redundant features and thus enhance
further the classification performance. In the second stage, FKNN
model is firstly trained on the training sets via 10-fold CV to get
the optimal parameter pair (k,m), and then the obtained optimal
FKNN model is used to perform the classification tasks.

3.1. Feature reduction phase using PCA

Many studies have shown that feature extraction plays an
important role in classifier modeling, especially for medical appli-
cations (Chen et al., 2012; Chen, Liu, Yang, Liu, & Wang, 2011;
Chen, Yang, Liu, & Liu, 2011; Ghazavi & Liao, 2008; Li, Ouyang,
Chen, & Liu, 2012). Feature extraction mainly performs two tasks:
transforming input parameter vector into a feature vector and
reducing its dimensionality. PCA (Duda, Hart, & Stork, 2001; Smith,
2002) is one of the most popular feature extraction tools, which
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seeks to find the largest variations in the original feature space. In
all, a well-defined feature extraction algorithm makes the classifi-
cation process more effective and efficient. In this study, an at-
tempt was made to investigate the effectiveness of PCA for
feature reduction on the PD diagnosis problem. The detailed pseu-
do-code of PCA is given below:

Pseudo-code for the feature reduction procedure
Step 1. Represent the PD data as a matrix O, whose rows rep-

resent instances, and columns are features.
Step 2. Subtract the mean from each column of O. The mean

is the average across each dimension. This produces a
new matrix M whose mean is zero, so that it satisfies
the work condition of PCA.

Step 3. Make a single value decomposition of M, namely,
M = URVT, where U is an s⁄s orthonormal matrix con-
taining the left singular vectors of M, R is an s⁄t rect-
angular diagonal matrix with nonnegative real
numbers on the diagonal, and the t⁄t matrix V is the
matrix of the right eigenvectors of M.

Step 4. Choose a reduced dimension number L, project M
down into the reduced space defined by only the first
L singular vectors UL, then the new matrix N = (UL)TM
is obtained.

3.2. Classification phase using FKNN

In the second stage, FKNN model performs the classification
tasks using the new feature set done by PCA. It includes two main
sub procedures. At first, we should set up all the parameters of
FKNN model. Since the fuzzy strength parameter has an impor-
tance influence on the performance of FKNN. Thus we design an
experimental strategy to choose the optimal fuzzy strength param-
eter for the FKNN classifier. The main idea is that we give a range of
[1, 2] with the step of 0.01 for the fuzzy strength parameter m, and
then validate the classification performance via the 10-fold CV
analysis on several numbers of neighbors k. For each choice of m,
Table 1
The detail of the 22 attributes of the PD data set.

Label Attribute Description

F1 MDVP:Fo(Hz) Average vocal fundamental frequency
F2 MDVP:Fhi(Hz) Maximum vocal fundamental frequency
F3 MDVP:Flo(Hz) Minimum vocal fundamental frequency
F4 MDVP:Jitter(%) Several measures of variation in fundamental

frequency
F5 MDVP:Jitter(Abs)
F6 MDVP:RAP
F7 MDVP:PPQ
F8 Jitter:DDP
F9 MDVP:Shimmer Several measures of variation in amplitude
F10 MDVP:Shimmer(dB)
F11 Shimmer:APQ3
F12 Shimmer:APQ5
F13 MDVP:APQ
F14 Shimmer:DDA
F15 NHR Two measures of ratio of noise to tonal

components in the voice
F16 HNR
F17 RPDE Two nonlinear dynamical complexity

measures
F18 D2
F19 DFA Signal fractal scaling exponent
F20 Spread1 Three nonlinear measures of fundamental

frequency variation
F21 Spread2
F22 PPE
we test the average accuracy obtained by FKNN via CV analysis, fi-
nally the one with the highest average accuracy is selected as the
optimal fuzzy strength parameter. After choosing the optimal fuz-
zy strength parameter, the FKNN classifier was employed to com-
pute the classification accuracy using the reduced feature set, and
then the results were averaged. The detailed pseudo-code for the
classification phase is as follows:

Pseudo-code for the classification procedure
/*performance estimation by using k-fold CV where k = 10*/
Begin

For i = 1:Mmax
For j = 1:k

Training set = k � 1 subsets;
Test set = remaining subset;
Train the FKNN model on the training set to find the

optimal fuzzy strength parameter m when the
neighborhood size k is set to 1, 3, 5 and 7 respectively;

Test it on the test set and assigns the accuracy to V(j),
where V is a vector whose element is the corresponding
accuracy obtained by each folder;

End for
Compute the mean value of vector V, and store the mean

CV accuracy to the vector M(i);
End for

Get the optimal m value whose corresponding mean CV
accuracy is the highest in M(i);

End
Begin

For l = 1:k
Training set = k � 1 subsets;
Test set = remaining subset;
Train the FKNN model on the training set using the

obtained optimal parameter combination;
Test it on the test set and save the mean CV accuracy;

End for
Return the average classification accuracy rates of FKNN
over l test set.

End
3.3. Method for comparison

In order to validate the superiority of the proposed FKNN-based
diagnosis system, the prominent SVM classifier was chosen for
algorithm comparison. SVM was first introduced by Vapnik
(1995), which seeks to minimize the upper bound of the general-
ization error based on the structural risk minimization principal.
The linear SVM finds an optimal separating margin by solving
the following optimization task:

Min gðw; nÞ ¼ 1
2 kwk

2 þ C
Xn

i¼1

ni

s:t:; yiðwT xi þ bÞP 1� ni; ni P 0

ð5Þ

where C is a penalty value, ni is the positive slack variables. This pri-
mal problem can be reduced to the Lagarangian dual problem by
introducing Lagrangian multipliers ai. According to the Karush
Kuhn–Tucker (KKT) condition, we can get the optimal solution ai.
If ai > 0, the corresponding data points are called SVs. Afterwards,
we can get the optimal hyperplane parameters w and b. Then the
linear discriminant function can be given by

gðxÞ ¼ sgn
Xn

i¼1

aiyix
T
i xþ b

 !
ð6Þ



Table 2
The confusion matrix.

Predicted positive Predicted negative

Actual positive True Positive (TP) False Negative (FN)
Actual negative False Positive (FP) True Negative (TN)
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In order to make the linear learning machine work well in non-lin-
ear cases, the original input space can be mapped into some higher-
dimensional feature space via a mapping function. With this map-
ping, xTx in the input space can be represented as the form of /
(xi)T/(x) in the feature space. The functional form of the mapping
/(xi) does not need to be known since it is implicitly defined by
one selected kernel: K(xi,xj) = /(xi)T/(xj). The most widely used ker-
nel in SVM is the Gaussian kernel (or Radial-Basis function, RBF),
which is defined as:

Kðxi;xjÞ ¼ expð�ckxi � xjk2Þ ð7Þ

where c is the predefined parameter controlling the width of the
Gaussian kernel. By introducing the kernel function, the decision
function can be expressed as follows:

gðxÞ ¼ sgn
Xn

i¼1

aiyiKðxi; xÞ þ b

 !
: ð8Þ

In Section 5, we will conduct the comparative study between FKNN-
based and SVM-based PD diagnosis model, and then the validity of
the feature reduction will be investigated accordingly.

4. Experiments design

4.1. Data description

In this study, we have performed our conduction on the PD data
set taken from UCI machine learning repository. (http://archive.ic-
s.uci.edu/ml/datasets/Parkinsons, last accessed: May 2012). The
purpose of this data set is to discriminate healthy people from
those with PD, given the results of various medical tests carried
out on a patient. This data set is composed of a range of biomedical
voice measurements from 31 people, 23 with PD. The time since
diagnoses ranged from 0 to 28 years, and the ages of the subjects
ranged from 46 to 85 years, with a mean age of 65.8. Each subject
provides an average of six phonations of the vowel (yielding 195
samples in total), each 36 seconds in length (for details consult
(Little et al., 2009)). It should be noted that there is no missing val-
ues in the data set, and the whole features are real valued. The
whole 22 features are presented in Table 1, along with its
description.

4.2. Experimental setup

FKNN classifier was implemented from scratch on an Intel
Quad-Core Xeon 2.0 GHz CPU using MATLAB language under Win-
dows Server 2003 environment. For SVM, LIBSVM implementation
is utilized, which is originally developed by Chang and Lin (2001).

Normalization is employed to avoid feature values in greater
numerical ranges dominating those in smaller numerical ranges,
as well as to avoid the numerical difficulties during the calculation.
In this study, the data are scaled into the interval of [0, 1] according
to the Eq. (9), where x is the original value, x0 is the scaled value,
maxa is the maximum value of feature a, and mina is the minimum
value of feature a.

x0 ¼ x�mina

maxa �mina
ð9Þ

In order to gain an unbiased estimate of the generalization accu-
racy, the 10-fold CV was used to evaluate the classification accuracy
(Kohavi, 1995). The main advantage of this method is that all of the
test sets are independent and the reliability of the results could be
improved. The main idea of 10-fold CV procedure is that each time
one of the 10 subsets is used as the test set and the remaining 9 sub-
sets are used as a training set. Then the average error across all 10
trials is computed. In order to ensure the same class distribution in
the subset, the data is split via stratified sampling in which the sam-
ple proportion in each data subset is the same as that in the popu-
lation. Note that only one repetition of the 10-fold CV will not
generate enough classification accuracies for comparison. Because
of the arbitrariness of partition of the data set, the predicted accu-
racy of a model at each iteration is not necessarily the same. To
evaluate accurately the performance of the data sets, the 10-fold
CV will be repeated 10 independent times and then the results were
averaged.

4.3. Measure for performance evaluation

Classification accuracy (ACC), sensitivity, specificity and AUC
were used to test the performance of the proposed PCA-FKNN
model. ACC, sensitivity and specificity are defined as follows
according to the confusion matrix which is shown in Table 2:

ACC ¼ TP þ TN
TP þ FP þ FN þ TN

� 100% ð10Þ

Sensitivity ¼ TP
TP þ FN

� 100% ð11Þ

Specificity ¼ TN
FP þ TN

� 100% ð12Þ

In the confusion matrix, TP is the number of true positives, which
means that some cases with ‘PD’ class is correctly classified as PD;
FN, the number of false negatives, which means that some cases
with the ‘PD’ class are classified as healthy persons; TN, the number
of true negatives, which means that some cases with the ‘Healthy’
class are correctly classified as healthy persons; and FP, the number
of false positives, which means that some cases with the ‘Healthy’
class are classified as PD. The receiver operating characteristic
(ROC) curve is a graphical display that gives the measure of the pre-
dictive accuracy of a logistic model. The curve displays the true po-
sitive rate and false positive rate. AUC is the area under the ROC
curve, which is one of the best methods for comparing classifiers
in two-class problems (Fawcett, 2006), in this study the method
proposed in Fawcett (2004) was implemented to compute the AUC.

5. Experimental results and discussions

In order to verify the effectiveness of the proposed model, firstly
FKNN was compared with the advanced SVM classifier on the ori-
ginal feature space. For the FKNN classifier, Fig. 2 shows the rela-
tionship between the classification accuracy and the fuzzy
strength parameter m which varies in the range of [1, 2] with the
step size of 0.01 using different numbers of k. It can be observed
that the classification accuracy fluctuates between 90% and 98%
with different values of m. It reveals that the fuzzy strength param-
eter has a big impact to the performance of FKNN classifier. The
best classification accuracy was achieved with the parameter pair
of (1, 1.17), (3, 1.04), (5, 1.06) and (7, 1.02) as shown in Fig. 2(a)–
(d) when k is equal to 3, 5 and 7 respectively. These optimal differ-
ent parameter pairs, namely (1, 1.17), (3, 1.04), (5, 1.06) and (7,
1.02) are used in the subsequent experiments, and for convenience
they are named FKNN1, FKNN2, FKNN3 and FKNN4 respectively.
Table 3 summarized the detailed results of classification perfor-
mance in terms of ACC, sensitivity, specificity and AUC obtained
by FKNN1, FKNN2, FKNN3 and FKNN4 in the form of average



Fig. 2. The relationship between classification accuracy and fuzzy strength parameter m with different numbers of k.

Table 3
Results of classification performance of FKNN with different optimal parameter pairs.

FKNN Performance metric Mean SD Max Min

FKNN1 ACC (%) 95.74 0.60 96.45 94.87
k = 1 Sensitivity (%) 96.25 0.45 96.79 95.28
m = 1.17 Specificity (%) 95.07 1.68 97.57 93.00

AUC (%) 95.66 0.91 96.98 94.48

FKNN2 ACC (%) 95.76 0.71 96.45 94.42
k = 3 Sensitivity (%) 95.53 0.42 95.94 94.59
m = 1.04 Specificity (%) 96.22 2.02 98.33 92.07

AUC (%) 95.87 1.04 97.12 93.82

FKNN3 ACC (%) 95.61 0.89 96.92 93.92
k = 5 Sensitivity (%) 95.93 0.96 97.45 94.38
m = 1.06 Specificity (%) 94.10 3.20 98.57 88.00

AUC (%) 95.01 1.86 97.00 91.19

FKNN4 ACC (%) 95.79 0.64 96.92 94.82
k = 7 Sensitivity (%) 95.75 0.41 96.37 95.05
m = 1.02 Specificity (%) 95.45 1.88 98.00 91.67

AUC (%) 95.60 1.01 97.19 93.81

Fig. 3. The relationship between the penalty parameter C and the classification
accuracy.
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accuracy (Mean), stand deviation (STD), maximal accuracy (Max)
and minimal accuracy (Min). From Table 3, we can see that the re-
sults of the classification performance of FKNN classifiers with dif-
ferent optimal parameter pair are very close. Among them, FKNN1
achieved the highest sensitivity of 96.25%, FKNN2 achieved the
highest specificity of 96.22% and the highest AUC of 95.87%, FKNN4
obtained the highest classification accuracy of 95.79%.

For the SVM classifier, we have implemented two SVM classifi-
ers, one is the SVM classifier with linear kernel (hereafter SVMlin-
er), and the other is the SVM classifier with RBF kernel (hereafter
SVMRBF). For SVMliner, the penalty parameter C, which deter-
mines the trade-off between the fitting error minimization and
model complexity, should be specified. Here we choose the optimal
C via CV method by giving the range of [1, 100] with the step size of
1, the one with the best CV accuracy was chosen as the optimal va-
lue of C. The relationship between the penalty parameter C and CV
accuracy is shown in Fig. 3, from which we can observe that the
best CV accuracy was obtained when C is equal to 24, thus 24 is
used the optimal value of C for subsequent analysis. For SVMRBF,
in addition to the penalty parameter C should be adjusted, the
other kernel parameter c, defines the non-linear mapping from



Fig. 4. Test accuracy surface with parameters on PD data set for several folds.

Table 4
Comparison results between the FKNN-based models and SVM-based models on the
whole input feature space.

Classifiers ACC (%) Sensitivity (%) Specificity (%) AUC (%)

FKNN1 95.74 ± 0.60 96.25 ± 0.45 95.07 ± 1.68 95.66 ± 0.91
FKNN2 95.76 ± 0.71 95.53 ± 0.42 96.22 ± 2.02 95.87 ± 1.04
FKNN3 95.61 ± 0.89 95.93 ± 0.96 94.10 ± 3.20 95.01 ± 1.86
FKNN4 95.79 ± 0.64 95.75 ± 0.41 95.45 ± 1.88 95.60 ± 1.01
SVMlinear 86.27 ± 0.94 95.31 ± 1.19 57.79 ± 4.53 76.55 ± 2.24
SVMRBF 93.52 ± 0.72 95.88 ± 1.19 86.35 ± 3.98 91.12 ± 1.63

The best values of each performance metric have been shown in bold.
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the input space to some high-dimensional feature space, should be
determined when performing the classification tasks. In order to
automatically tune the two parameter of SVMRBF, the grid search
technique (Hsu, Chang, & Lin, 2003) was employed using 5-fold CV
to find out the optimal parameter values. The range of the related
parameters C and c are varied between C = {2�5,2�3, . . . ,215} and
c = {2�15,2�13, . . . ,21}. 11 � 9 = 99 parameter combinations of
(C,c) were tried and the one with the best CV accuracy was chosen
as the parameter values of the RBF kernel. Then the best parameter
pair (C,c) was used to create the model for training. Fig. 4 shows
the test classification accuracy surface of fold 1, 3, 5 and 7 of 10
folds in one run of 10-fold CV procedure, where the x-axis and
y-axis are log2C and log2c, respectively. Each mesh node in the
(x,y) plane of the test accuracy stands for a parameter combination
and the z-axis denotes the obtained test accuracy value with each
parameter combination. The detailed results achieved by SVM
models together with those of four FKNN models are detailed in
Table 4. It can be seen from the table that FKNN-based models
are much more superior to SVM-based ones by a large percentage
in terms of ACC, sensitivity, specificity and AUC. We also can ob-
serve that the performance of SVMRBF was much higher than that
of SVMlinear, the reason may lie in that the relation between class
labels and attributes in PD data set is nonlinear, thus the linear ker-
nel can’t work well for the nonlinear case. In addition, it is interest-
ing to see that the standard deviation for the acquired performance
by the FKNN-based models is much smaller than that of SVM-
based models in most cases, which indicates consistency and sta-
bility of the proposed model.

In order to investigate whether feature reduction can enhance
the performance of the FKNN classifier, we further conducted the
proposed model on the reduced feature space using PCA approach.
For comparison purpose, we also implemented the SVM-based ap-
proaches on the same problem. Table 5 lists the results of FKNN-
based models and SVM-based models with feature extraction done
by PCA in terms of ACC and AUC where the principle components
(PCs) range from 1 to 20 with the step size of 5. We can observed that
FKNN1 achieves the best performance when PCs is equal to 10,
FKNN2, FKNN3 and FKNN4 achieved the best performance when
PCs is equal to 20, while SVM-based approaches achieved the best
performance when PCs is equal to 15, and we find all these best re-
sults are higher than the ones obtained on the original feature space,
namely, the whole 22 features. It indicates that there is irrelevant
and redundant information in the original PD feature space and dif-
ferent classifiers get the best results on different reduced feature
space. It is interesting to find when PCs is equal to 1, SVMlinear
has outperforms all the other classifiers in terms of ACC and AUC.
The reason may be that when the feature space is reduced to 1, the
data distribution is most suitable for the SVM with the linear kernel
to find the optimal hyperplane. From the table we can also find that
when the features are projected to the new space, FKNN-based ap-
proaches can still outperform the SVM-based ones in most cases.
Fig. 5 shows the comprehensive results obtained by the six classifi-
ers in terms of ACC, AUC, sensitivity and specificity in one run of 10-
fold CV on the reduced feature space where the PCs range from 1 to
22 with the step size of 1. It can be observed that FKNN-based



Fig. 5. The relationship between the classification performance and different reduced feature space.

Table 5
Comparison results between the FKNN-based models and SVM-based models on the reduced input feature space.

No of PCs Metric FKNN1 FKNN2 FKNN3 FKNN4 SVM

Linear RBF

1 AUC (%) 61.19 ± 3.38 62.44 ± 2.24 61.62 ± 2.69 61.89 ± 2.59 68.71 ± 1.52 66.53 ± 2.11
ACC (%) 71.46 ± 1.77 72.47 ± 1.17 72.94 ± 1.57 69.67 ± 0.95 80.96 ± 0.56 80.92 ± 0.74

5 AUC (%) 93.42 ± 1.36 93.60 ± 1.46 93.49 ± 1.57 93.42 ± 1.01 74.73 ± 2.57 87.77 ± 2.21
ACC (%) 93.55 ± 0.80 93.91 ± 0.86 94.06 ± 0.79 93.71 ± 0.67 85.37 ± 0.43 91.52 ± 1.44

10 AUC (%) 95.90 ± 0.98 94.99 ± 1.48 95.36 ± 1.63 95.22 ± 0.97 77.23 ± 1.98 89.71 ± 1.48
ACC (%) 96.07 ± 0.60 95.44 ± 0.89 95.84 ± 0.84 95.76 ± 0.64 86.60 ± 1.20 92.75 ± 0.91

15 AUC (%) 95.15 ± 1.50 96.04 ± 0.96 95.58 ± 1.20 95.11 ± 1.04 77.60 ± 1.96 92.31 ± 1.97
ACC (%) 95.45 ± 0.45 95.49 ± 0.83 95.59 ± 0.78 95.39 ± 0.85 86.99 ± 1.60 94.82 ± 1.26

20 AUC (%) 95.44 ± 1.02 96.19 ± 1.45 95.73 ± 1.09 95.87 ± 1.33 77.43 ± 1.45 90.56 ± 2.03
ACC (%) 95.73 ± 0.65 95.95 ± 0.73 95.86 ± 0.87 95.90 ± 0.73 86.41 ± 0.83 93.32 ± 1.04

The best results have been shown in bold.
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approaches achieve the better results than SVM-based ones in terms
of ACC, AUC and specificity on the reduced space in most cases. How-
ever, the sensitivity obtained by the SVM-based approaches is very
close to the FKNN-based ones. It means that SVM can achieve the
same ability to discriminate the patients with PD as that of FKNN.
For comparison purpose, Table 6 also lists the classification
accuracies of the previous methods which investigated on the PD
diagnosis problem. As shown in Table 6, our developed PCA-FKNN
system can obtain better classification accuracy than all available
methods proposed in previous studies.



Table 6
Classification accuracies obtained with our method and other methods.

Study Method Accuracy (%)

Little et al. (2009) Pre-selection
filter + Exhaustive
search + SVM

91.4 (bootstrap with 50
replicates)

Shahbaba and
Neal (2009)

Dirichlet process mixtures 87.7 (5-fold CV)

Das (2010) ANN 92. (hold-out)
Sakar and Kursun

(2010)
Mutual information based
feature

92.75 (bootstrap

selection + SVM with 50 replicates)
Psorakis et al.

(2010)
Improved mRVMs 89.47 (10-fold CV)

Guo et al. (2010) GP-EM 93.1 (10-fold CV)
Ozcift and Gulten

(2011)
CFS-RF 87.1 (10-foldCV)

Li et al. (2011) Fuzzy-based non-linear
transformation +

93.47 (hold-out)

SVM
Luukka (2011) Fuzzy entropy

measures + similarity
85.03 (hold-out)

classifier
Spadoto et al.

(2011)
Particle swarm
optimization + OPF

73.53 (hold-out)

Harmony search + OPF 84.01 (hold-out)
Gravitational search
algorithm + OPF

84.01 (hold-out)

AStröm and
Koker (2011)

Parallel NN 91.20 (hold-out)

This Study PCA-FKNN 96.07 (average 10-fold
CV)
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6. Conclusions and future works

This study introduces a new model for PD diagnosis. The main
novelty of this model lies in employing the FKNN classifier together
with the feature reduction technique to do the diagnosis tasks for
PD. Experimental results demonstrated that the proposed system
performed significantly well in distinguishing the patients with PD
and healthy ones. Meanwhile, a comparative study was conducted
between SVM and FKNN. The experimental results have shown that
FKNN approach performs advantageously over the SVM methods in
terms of the classification accuracy, sensitivity, specificity and AUC.
Additionally, our developed system outperformed the existing
methods proposed in the literature. Hence, it can be safely con-
cluded that, the developed diagnosis system can serve as a promis-
ing alternative tool in medical decision-making for PD diagnosis. The
future investigation will pay much attention to evaluate the pro-
posed system in other medical diagnosis problems.
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