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Abstract

In this paper, we propose a Two-dimensional locality preserving projection based on maximum scatter
difference (2D-DLPP/MSD). 2D-LPP/MSD use additive principle to preserve the locality by maximizing
the between-class scatter and within-class scatter instead of using multiplicative principle of 2D-DLPP.
Theoretically, we also discuss the influence of balance factor α on performance and reveal the relations
between 2D-LPP/MSD and 2D-DLPP. Experimental results on the ORL and Yale face databases show
the effectiveness of the proposed 2D-DLPP/MSD.
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1 Introduction

As one of the most important biometric techniques, face recognition has gained lots of attentions
in pattern recognition and machine learning areas. Usually, a 2D facial image is represented as a
feature point in the high dimensional feature space. Its perceptually structure can be characterized
by using a small set of meaningful parameters. Thus, dimensionality reduction techniques are
commonly used before recognition.

PCA[1] is a widely used linear dimensionality reduction method by maximizing variance of
projected feature in the projective subspace. Linear LDA[2] encodes discriminant information by
maximizing the ratio between the between-class and within-class scatters. Seung[3] assumed that
the high dimensional visual image information in real world lies on or is close to a smooth low
dimensional manifold. Inspired by this idea, multiple manifold dimensionality reduction methods
that preserve local structure of samples have been proposed. Locality Preserving Projections
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(LPP)[4] aims to preserve the local structure of the original space in the projective subspace. Its
performance is better than those of PCA and LDA for face recognition[5]. Discriminant Locality
Preserving Projections (DLPP)[6] encodes discriminant information into LPP to further improve
the discriminant performance of LPP for face recognition. Some other DLPP related works can
be found in [7][8][9][10].

The above one dimensional methods applied on the 2D images have some potential problems:
singularity of within-class scatter matrices, limited available projection directions, high compu-
tational cost and a loss of the underlying spatial structure information of the images.

To overcome the above problems, some researchers have attempted to treat the image as a
matrix instead of a vector. Yang et al.[11] proposed a 2D-PCA algorithm to compute the image
scatter matrix from the image matrix representations directly. Li and Yuan[12] presented a
2D-LDA which is an extension of the tranditional LDA by using the idea of the image matrix
representations. Chen et al.[13] developed a 2D-LPP which directly extracts the proper features
from image matrix representations by preserving the local structure of samples. Xu et al.[14] used
discriminant information to construct the adjacency graph based on 2D-LPP. And Yu developed
[15] a 2D-DLPP, a variation of 2D-LPP which uses DI. 2D-LPP and 2D-DLPP achieved better
results in recognizing face, facial expression[16], gait[17], and palm[18] than the methods which
preserve the global structure of samples such as 2D-PCA, 2D-LDA. These methods not only
reduce the complexities of time and space, but also preserve spatial structure information of the
2D images.

In this paper, we propose a new two-dimensional discriminant locality preserving projection
based on the maximum scatter difference (2D-LPP/MSD). Motivated by the idea of MSD[19], 2D-
LPP/MSD seeks to maximize the difference, rather than the ratio, between the locality preserving
between-class scatter and the locality preserving within-class scatter. The experimental results on
the ORL and Yale face databases show the effectiveness of the proposed 2D-LPP/MSD method.

The rest of this paper is organized as follows: in Section 2, we briefly review the LDA, MSD and
LPP; in Section 3, we introduce the two-dimensional discriminant locality preserving projection
based on the maximum scatter difference; in Section 4, we analyze the influence of the parameter
α on recognition performance and reveal the relations between 2D-LPP/MSD and 2D-DLPP,
theoretically; in Section 5, the experimental results are reported and analyzed; finally in Section 6,
conclusions are drawn and several issues for future works are discussed.

2 Review of the LDA, MSD and LPP algorithms

LDA is one of the linear discriminant dimensionality reduction algorithms. It tries to search for
the directions which are most effective for discrimination by maximizing the ratio between the
between-class scatter matrix Sb and the within-class scatter matrix Sw. Sw and Sb are defined as

Sw =
C∑
c=1

∑
xi∈Xc

(xi − xc)(xi − xc)
T (1)

Sb =
C∑
c=1

Nc(xc − x)(xc − x)T (2)
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where xc is the mean value of the cth class and Nc is the number of samples of cth class. The
criterion function is defined as:

max
w

wTSbw

wTSww
(3)

MSD[19] is another linear discriminant dimensionality reduction algorithm. Its criterion func-
tion is obtained by using the additive principle[20] instead of the multiplicative principle to
combine the two scatter matrices.

max
w

wT (Sb − αSw)w (4)

where, the parameter α is a nonnegative constant which is a balance factor.

LPP[4] is a manifold dimensionality reduction which attempts to find a transformation matrix
A that maps N samples X = [x1,x2, . . . ,xN ] to a set of the projected points Y = [y1,y2, . . . ,yN ],
where X is D ×N matrix and Y is d×N matrix (d ≤ D). The objective function of LPP is as
follows:

min
A

∑
i,j

(yi − yj)
2Sij (5)

where yi = ATxi and the matrix S is defined as follows

Sij =

{
exp(−∥xi − xj∥2/t) xi(xj) is among k nearest neighbor of xj(xi)

0 otherwise.
(6)

where t is a parameter that can be determined empirically. The Eq. (5) can be converted to the
generalized eigenvalue problem as follows:

XLXTa = λXDXTa (7)

where D is a diagonal matrix; its entries are column (or row, since S is symmetric) sum of S,
Dii =

∑
j Sij. L = D− S is the Laplacian matrix.

Let the column vectors a1, a2, . . . , ad be the solutions of Eq. (7), ordered according to their
eigenvalues, λ1, λ2, . . . , λd. Thus, the transformation matrix A can be obtained as follows:

A = [a1, a2, . . . , ad] (8)

3 2D-LPP based on Maximum Scatter Difference

We have a set X consisting of N samples coming from C classes:

X =
{
X1

1,X
1
2, . . . ,X

1
N1
,X2

1,X
2
2, . . . ,X

2
N2
, . . . ,XC

1 ,X
C
2 , . . . ,X

C
NC

}
(9)

where Xc
i ∈ Rm×n means the ith sample in the cth class. Nc is the number of samples in the cth

class, and N1+N2+ . . .+NC = N is satisfied. The task is to obtain a projective matrix V which
projects those N samples to a set of the projected points

Yc
i = Xc

iV, i = 1, 2, . . . , Nc, c = 1, 2, . . . , C. (10)

where Yc
i ∈ Rm×d.
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Wc is the within-class similarity matrix of cth class and its entry W c
ij is the similarity between

the samples Xc
i and Xc

j, which is defined as: W c
ij = exp(−∥Xc

i − Xc
j∥2F/t), where ∥ · ∥ is the

Frobenius norm of matrix, i.e. ∥A∥F =
√∑

i

∑
j A

2
ij.

We seek V such that the two samples of the same class Xc
i and Xc

j are close then feature points
Yc

i and Yc
j are close as well. Thus we minimize the following objective:

1

2

C∑
c=1

Nc∑
i,j=1

∥Xc
iV −Xc

jV∥2FW c
ij

=
1

2

C∑
c=1

Nc∑
i,j=1

tr
[
(Xc

iV −Xc
jV)T (Xc

iV −Xc
jV)

]
W c

ij

=
1

2

C∑
c=1

Nc∑
i,j=1

tr
[
VT (Xc

i −Xc
j)

T (Xc
i −Xc

j)V
]
W c

ij

= tr

{
C∑
c=1

Nc∑
i,j=1

VT
[
(Xc

i)
TXc

i − (Xc
i)

TXc
j

]
VW c

ij

}

= tr

{
VT

{
C∑
c=1

[
Nc∑
i=1

(Xc
i)

TXc
i

Nc∑
j=1

W c
ij −

Nc∑
i,j=1

(Xc
i)

TXc
jW

c
ij

]}
V

}

= tr

{
VT

{
C∑
c=1

[
(Xc)T (Dc ⊗ Im)X

c − (Xc)T (Wc ⊗ Im)X
c
]}

V

}
= tr

{
VTXT [(D−W)⊗ Im]XV

}
= tr

[
VTXT (L⊗ Im)XV

]

(11)

where

Xc =


Xc

1

Xc
2
...

Xc
Nc

 (12)

and

X =


X1

X2

...
XC

 (13)

Dc is a diagonal matrix, and its entries are column (or row, since Wc is symmetric) sum of Wc,
Dc

ii =
∑

j W
c
ij. D and W are separately composed of Dc and Wc, that is,

D =


D1

. . .

Dc

. . .

DC

 (14)
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and

W =


W1

. . .

Wc

. . .

WC

 (15)

L = D −W . Im is an identity matrix of order m and operator ⊗ is the Kronecher product of
the matrices.

Meanwhile, we attempt to ensure that if the mean samples of two class Xi and Xj are close
then feature matrix Yi and Yj are far. Thus we maximize the following objective:

1

2

C∑
i,j=1

∥XiV −XjV∥2FBij

=
1

2

C∑
i,j=1

tr
[
VT (Xi −Xj)

T (Xi −Xj)V
]
Bij

=
C∑

i,j=1

tr
{
VT [(Xi)

TXi − (Xi)
TXj]V

}
Bij

= tr

{
C∑
i=1

VT

[
(Xi)

TXi

C∑
j=1

Bij

]
V −

C∑
i,j=1

VT (Xi)
TBijXjV

}
= tr

{
VTX

T
[(E−B)⊗ Im]XV

}
= tr

[
VTX

T
(H⊗ Im)XV

]

(16)

where

X =


X1

X2
...

XC

 (17)

B is the between-class similarity matrix and its entry Bij is the similarity between the mean

samples Xi and Xj, and it is defined as: Bij = exp(−∥Xi −Xj∥2F/t), where Xi =
1
Ni

∑Ni

k=1X
i
k.

We suppose SH = X
T
(H⊗ Im)X and SL = XT (L⊗ Im)X. In 2D-DLPP/MSD, we use the

criterion function as follows:

max
V

VT (SH − αSL)V (18)

where the parameter α is a nonnegative constant. The maximin problem (18) can be thought of as
the Rayleigh quotient[21] and obtain it’s solution by computing the eigenvectors and eigenvalues:

(SH − αSL)v = λ(SH − αSL)v (19)

Let the column vectors v1, v2, . . . , vd be the solutions of Eq.(19), ordered according to their eigen-
values, λ1 > λ2 > . . . > λd, Thus The optimal projection matrix v = [v1,v2, . . . ,vd].
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4 Relations between 2D-LPP/MSD and 2D-DLPP

It is easy to see that the difference between 2D-LPP/MSD and 2D-DLPP is the different principles
[20]. When α in Eq.(18) is with a given value, 2D-LPP/MSD will degenerate into 2D-DLPP. In
other words, 2D-LPP/MSD is the generalization of 2D-DLPP .

Without loss of generality, we assume d = 1, then the projective matrix V becomes a column
N -dimensional vector v. Let v(α) be the optimal solution of Eq.18 when the parameter α has
the value α∗

J(α∗) = a(α∗)T (SH − α∗SL)a(α
∗) (20)

Theroem 1 J(α∗) is a monotone decreasing function. When the locality preserving within-class
scatter matrix SL is nonsingular, J(α∗) is a strictly monotone decreasing function. And when α∗

is approaching infinity, the limit of J(α∗) is negative infinity .

Proof Let α∗
1 < α∗

2, vi is the unit eigenvector of the matrix (SH − α∗
iSL) corresponding to the

largest eigenvalue, i = 1, 2. It is obvious that

J(α∗
1) = vT

1 (SH − α∗
1 · SL)v1 ≥ vT

2 (SH − α∗
1 · SL)v2

= vT
2 (SH − α∗

2 · SL)v2 + (α∗
2 − α∗

1)v
T
2 SLv2

= J(α∗
2) + (α∗

2 − α∗
1)v

T
2 SLv2

(21)

SL is positive definite, we have vT
2 SLv2 ≥ 0. Thus, J(α∗

1) ≥ J(α∗
2), i.e., J(α

∗) is a monotone
decreasing function. Especially, when SL is non-singular, SL is positive definite. Thus, for any
unit vector v, we always have

vTSLv ≥ λL > 0 (22)

where λL is the smallest eigenvalue of SL. In this case, J(α∗
1) > J(α∗

2)), i.e., J(α
∗) is a strictly

monotone decreasing function.

Let λH denote the largest eigenvalue of the matrix SH . for any unit vector v, the following
inequality always holds:

vTSHv ≤ λH (23)

From (22) and (23), we have

J(α∗) = vT(SH − α∗ · SL)v = vTSHv − α∗vTSLv ≤ λH − α∗ · λL (24)

It is obvious that lim
α∗→∞

J(α∗) = −∞

From Theorem 1, we know that the parameter α is as small as possible in order to get better
recognition rate.

Theroem 2 If SL is nonsingular, there exists a unique positive root α0 of the equation J(α0) = 0.
The unit eigenvector of the matrix (SH − α0SL) corresponding to the largest eigenvalue is the
solution of 2D-DLPP.
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Fig. 1: Sample images for one subject of the YALE database.

Proof Suppose v is the eigenvector of the largest eigenvalue λH . Then

J(0) = vTSHv = λH > 0 (25)

From the proof of Theorem 1, we know that J(α∗) < 0 when α∗ > λH

λL
.

Since J(α) is a continuous function, there must exist a point α0 in the interval (0, α∗) such that
J(α0) = 0. Considering that J(α) is a strictly monotone function, we know that the point α0 is
unique.

From J(α0) = 0, i.e., (SH − α0 · SL)v(α0) = 0, one can obtain:

SHv(α0) = α0 · SLv(α0) (26)

a(α0) is the solution of 2D-DLPP.

From Theorem 1 and Theorem 2, when 0 < α < α0, the performance of 2D-LPP/MSD is
superior to 2D-DLPP, theoretically.

5 Experiments and results

In this section, the experiments are conducted on the two well-known face databases, i.e., ORL
and Yale[22], to evaluate the performance of 2D-LPP/MSD. 2D-LPP, 2D-DLPP and the proposed
method are used for feature extraction. A nearest neighbor classifier with Euclidean distance is

employed for classification in the projected space. For heat kernel exp(−∥x−y∥2
t

), parameter t is
set as 1000. For k nearest neighbors in 2D-LPP, parameter k is set as 12.

5.1 Database

There are total of 165 gray scale images for 15 individuals where each individual has 11 images
in Yale face database. The images demonstrate variations in lighting condition, facial expression
(normal, happy, sad, sleepy, surprised, and wink). The sample images of one individual from the
Yale database are showed in Fig. 1.

The ORL database collects images from 40 individuals, and 10 different images are captured for
each individual. For each individual, the images with different facial expressions and details are
obtained at different times. The face in the images may be rotated, scaled and be tilting in some
degree. The sample images of one individual from the ORL database are shown in Fig. 2. For
the purpose of computation efficiency, all images in the two face databases are resized to 32× 32
pixels.
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Fig. 2: Sample images for one subject of the ORL database.

5.2 Analysis on parameter α

The first 2, 5 and 8 images of each individual are selected for training, while the remaining
images are used for testing on ORL and Yale face databases. The recognition accuracy of 2D-
LPP/MSD algorithm over the variance of the dimensionality of subspaces and different values of
the parameter α is demonstrated on ORL face database in Fig. 3. The recognition accuracy of
2D-LPP/MSD algorithm over the variance of the dimensionality of subspaces and different values
of the parameter α is demonstrated on YALE face database in Fig. 4.

From the results, we can see that when the value of α is smaller, the performance of the proposed
algorithm is better. The conclusion proves the theoretically analysis in Section 4.
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Fig. 3: Recognition accuracy V.S. α using the first 2, 5 and 8 sample images for one subject of the ORL
database as training set and the remaining images as testing set.
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Fig. 4: Recognition accuracy V.S. α using the first 2, 5 and 8 sample images for one subject of the YALE
database as training set and the remaining images as testing set.

5.3 Comparing 2D-LPP/MSD with 2D-LPP and 2D-DLPP

A number of experiments are implemented to compare the performances of 2D-LPP/MSD, 2D-
LPP and 2D-DLPP with different number of training samples. The parameter α is set as 0.0001.
Here, four tests are performed with different number of training samples on the ORL face database.
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More specifically, in the kth test, we use the first k image samples per class for training and the
remaining samples for testing on the ORL face database. Table 1 presents the top recognition
accuracies of 2D-LPP/MSD, 2D-DLPP and 2D-LPP, which corresponds to different numbers of
training samples. The value in parentheses denotes the dimension of feature vectors obtained by
the three algorithms. Table 1 shows that the performance of 2D-LPP/MSD gets the best result
using the first 7, 8 images per subject for training sets.

The experiment with the same setup is conducted on the Yale face database. Table 2 shows the
proposed algorithm outperforms other methods for 5 tests out of 9 tests, and the mean accuracy
of proposed method is also better than other methods.

Table 1: Comparison of the top recognition accuracy (%) of 2D-LPP/MSD versus 2D-DLPP and
2D-LPP on the ORL face database

Training samples/classs 5 6 7 8

2D-LPP/MSD 91.5(8) 96.88(5) 96.67(5) 96.25(5)
2D-DLPP 92.5(3) 96.88(4) 95.83(3) 95(3)
2D-LPP 85.5(3) 94.37(3) 95.83(3) 93.75(3)

Table 2: Comparison of the top recognition accuracy (%) of 2D-LPP/MSD versus 2D-DLPP and
2D-LPP on the Yale face database

Training samples/classs 2 3 4 5 6

2D-LPP/MSD 73.33(5) 80(5) 82.86(4) 81.11(13) 78.67(4)
2D-DLPP 54.07(3) 70.83(7) 73.33(6) 83.33(4) 78.67(3)
2D-LPP 68.89(9) 71.67(3) 77.14(3) 78.89(1) 76(2)

Training samples/classs 7 8 9 10 Mean

2D-LPP/MSD 93.33(5) 91.11(5) 90(4) 100(3) 85.6
2D-DLPP 91.67(6) 93.33(15) 90(9) 93.33(5) 80.95
2D-LPP 88.33(1) 88.89(7) 86.67(7) 93.33(1) 81.09

6 Conclusion

In this paper, we proposed a new two-dimensional locality preserving projection based on maxi-
mum scatter difference(2D-LPP/MSD). Compared with 2D-LPP, 2D-LPP/MSD can balance the
relative merits of maximization the difference, rather than the ratio, between the locality pre-
serving between-class scatter and the minimization of the locality preserving within-class scatter
by introducing a parameter α. And we analyze the influence of the parameter α on recognition
performance, theoretically. Meanwhile, the relations between 2D-LPP/MSD and 2D-DLPP are
revealed. Experimental results on ORL and Yale face databases indicate that 2D-LPP/MSD per-
forms significantly better than 2D-DLPP and 2D-LPP methods in terms of recognition accuracy.
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