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Abstract:  

Breast cancer is becoming a leading cause of death among women in the whole world, 

meanwhile, it is confirmed that the early detection and accurate diagnosis of this disease can 

ensure a long survival of the patients. In this paper, a swarm intelligence technique based support 

vector machine classifier (PSO_SVM) is proposed for breast cancer diagnosis. In the proposed 

PSO-SVM, the issue of model selection and feature selection in SVM is simultaneously solved 

under particle swarm (PSO optimization) framework. A weighted function is adopted to design the 

objective function of PSO, which takes into account the average accuracy rates of SVM (ACC), 

the number of support vectors (SVs) and the selected features simultaneously. Furthermore, time 

varying acceleration coefficients (TVAC) and inertia weight (TVIW) are employed to efficiently 

control the local and global search in PSO algorithm. 

The effectiveness of PSO-SVM has been rigorously evaluated against the Wisconsin Breast 

Cancer Dataset (WBCD), which is commonly used among researchers who use machine learning 

methods for breast cancer diagnosis. The proposed system is compared with the grid search 

method with feature selection by F-score. The experimental results demonstrate that the proposed 

approach not only obtains much more appropriate model parameters and discriminative feature 

subset, but also needs smaller set of SVs for training, giving high predictive accuracy. In addition, 

Compared to the existing methods in previous studies, the proposed system can also be regarded 

as a promising success with the excellent classification accuracy of 99.3% via 10-fold cross 

validation (CV) analysis. Moreover, a combination of five informative features is identified, which 

might provide important insights to the nature of the breast cancer disease and give an important 

clue for the physicians to take a closer attention. We believe the promising result can ensure that 

the physicians make very accurate diagnostic decision in clinical breast cancer diagnosis. 

 

Keywords: Support vector machines; Particle swarm optimization; breast cancer diagnosis; 

Feature selection; swarm intelligence 



1 Introduction  

Worldwide, breast cancer is the second most common type of cancer after lung cancer (10.4% 

of all cancer incidence, both sexes counted) and the fifth most common cause of cancer death. 

Moreover, it is now by far the most common cancer amongst women, with an incidence rate more 

than twice that of colorectal cancer and cervical cancer and about three times that of lung cancer. 

However breast cancer mortality worldwide is just 25% greater than that of lung cancer in women 

(http://www.wnba.com/silverstars/community/breast_health_awareness.html, last accessed 

February 2011). Research is under way to learn more and scientists are making great progress in 

detecting the disease at an early stage. Early diagnosis requires an accurate and reliable diagnosis 

procedure that allows physicians to distinguish benign breast tumors from malignant ones [1]. 

Thus, expert systems and artificial intelligent techniques are increasingly introduced to help 

improve the diagnostic capability. With the help of these automatic diagnostic systems, the 

possible errors experts made in the course of diagnosis can be avoided, and the medical data can 

be examined in shorter time and more detailed as well.  

A great deal of artificial intelligent techniques has been investigated to diagnose the disease of 

breast cancer with high classification accuracies. Among these, in [2] presented by Quinlan, C4.5 

decision tree method was used and the obtained classification accuracy was 94.74%. In [3], 

Hamiton etal.obtained 94.99% accuracy with the RIAC method using 10-fold CV. In [4], Ster and 

Dobnikar obtained 96.8% with linear discreet analysis (LDA) method. The accuracy obtained by 

Bennett and Blue [5] who used SVM was 97.2%, by Nauck and Kruse [6] was 95.06% with 

neuro-fuzzy techniques and by Pena-Rayes and Sipper [7] was 97.36% using fuzzy-GA method. 

In [8] presented by Setiono, the classification was based on a feed forward neural network rule 

extraction algorithm, the reported accuracy was 98.10%. In. [9] presented by Goodman et al, three 

different methods, optimized learning vector quantization (LVQ), big LVQ, and artificial immune 

recognition system (AIRS), were applied and the obtained accuracies were 96.7%, 96.8%, and 

97.2%, respectively. In [10] presented by Abonyi et al., an accuracy of 95.57% was obtained with 

the application of supervised fuzzy clustering technique. In [11], Ubeyli presented the mixture 

experts (ME) network structure for breast cancer diagnosis, the obtained total classification 

accuracy was 98.85%. In [12] presented by Sahan et al., a new hybrid method based on 

fuzzy-artificial immune system and k-nn algorithm (Fuzzy-AIS-knn) was used and the obtained 

accuracy was 99.14%. In [13] presented by Ubeyli, multilayer perceptron neural network, four 

different methods, combined neural network, probabilistic neural network, recurrent neural 

network and SVM were used respectively, highest classification accuracy of 97.36% was achieved 

by SVM. In [14] presented by Polat and Gunes, least square SVM (LS-SVM) was used and 

98.53% accuracy was obtained. Akay [15] reached 99.51% classification accuracy using a 

SVM-based method combined with F-score method. In [16], Ubeyli developed adaptive 

neuro-fuzzy inference system (ANFIS) for breast cancer detection, and the total accuracy of 

99.08% was obtained. In [17] presented by Karabatak and Cevdet, the method combined with 

association rules and neural networks (AR+NN) were used and classification accuracy of 97.4% 

was obtained. In [18], Huang et al. reached 98.83%, 97.51% classification accuracy using 

sequential backward selection (SBS) algorithm integrating with BPNN and LM (SBS-BPLM), 

BPNN and PSO (SBS-BPPSO), respectively. In [19], Marcano-Cedeño et al. used the Artificial 

Metaplasticity Multilayer Perceptron (AMMLP) algorithm and the classification accuracy of 

99.26% was obtained. In [20], Fan et al. reached 98.90% classification accuracy using case-based 

reasoning approach combined with fuzzy decision tree (CBFDT). In [21], Chen et al proposed a 

rough set based support vector machine classifier (RS_SVM) for breast cancer diagnosis, the 

highest and average classification accuracy of 100% and 96.87% were achieved respectively. 

As can be seen from theses works, SVM has been used to diagnose the breast cancer and 

achieved the highest classification accuracy among the available artificial intelligent methods in 

literature. However, in our opinion despite its great potential, the SVM approach has not received 

the attention it deserves in the breast cancer diagnosis literature as compared to other research 

fields. SVM as a relatively new machine learning technique was first introduced by Vapnik [22]. 

It seeks to minimize the upper bound of the generalization error based on the structural risk 

minimization (SRM) principal that is known to have high generalization performance. Another 

key feature of SVM is that training SVM is equivalent to solving a linear constrained quadratic 

programming problem. Thus it is unlikely to be trapped in the local optimum [23-24]. Thanks to 

http://www.wnba.com/silverstars/community/breast_health_awareness.html


its good properties, it has found its application in a wide variety of fields including handwritten 

digit recognition [25] , face detection in images [26], text categorization [27], and so forth. When 

using SVM for tackling practical problems, there are two issues have to be handled. On the one 

hand, the appropriate kernel parameter setting plays a significant role in designing an effective 

SVM model. The first parameter, penalty parameter C, determines the trade-off between the 

fitting error minimization and model complexity. The second parameter, gamma (γ or d) of the 

kernel function, defines the non-linear mapping from the input space to some high-dimensional 

feature space. On the other hand, choosing the optimal input feature subset also influence the 

performance of the SVM model in great part. Feature selection is an important issue in building 

classification systems, which refers to choosing subset of attributes from the set of original 

attributes. Its key purpose is to identify the significant features, eliminate the irrelevant of 

dispensable features and build a good learning model. The benefits of feature selection are 

twofold: it considerably decreases the computation time of the induction algorithm and increases 

the accuracy of the resulting model as well [28]. Both of them are crucial because the feature 

selection influences the appropriate kernel parameters and vice versa [29], this suggested that they 

should be dealt with simultaneously.  

Grid search [30] is one of the most common methods to determine appropriate values for C and 
 , which can lead to the highest classification accuracy rate in an interval through setting 

appropriate values for the upper and lower bounds and the jumping interval in the search. 

However, this approach is a local search method which is vulnerable to local optimum. 

Additionally, setting an appropriate search interval is not an easy job. It will be costly in time and 

computational resources if the search interval is set to too large, otherwise, if the search interval is 

set too small will render the unsatisfactory outcome. Apart from grid search, the gradient descent 

method [31] is also used to obtain the optimal parameters of SVM. Nevertheless, one 

disadvantage of gradient descent algorithm is that this algorithm is sensitive to initial parameters. 

When initial parameters are far from the optimal solution, it will be easily converged to local 

optimum. In this study, we attempted to tackle the parameter optimization and feature selection 

problem for SVM simultaneously using a new learning scheme based on swarm intelligence. As a 

new swarm intelligence technique, Particle swarm optimization (PSO), has been found to be a 

promising technique for real world optimization problems [32] due to its strong global search 

capability. Compared to genetic algorithms (GA), PSO takes less time for each function 

evaluation as it does not use many of GA operators like mutation, crossover and selection operator, 

and most important of all PSO is very easy to implement. In this study, both continuous and 

discrete PSO algorithms are employed to construct the efficient SVM classifier. The continuous 

PSO algorithm is employed to evolve the optimal parameters, while the discrete PSO algorithm is 

used as a feature selection vehicle to identify the most discriminant features. 

The main objective of this study is to exploit the maximum generalization capability of SVM 

and apply it to the breast cancer diagnosis to distinguish benign breast tumor from malignant one. 

The proposed breast cancer diagnostic system consists of two stages. In the first stage, the 

continuous PSO algorithm is employed to evolve the optimal kernel parameters, and the discrete 

PSO algorithm is utilized as a feature selection tool to obtain a compact and discriminative feature 

subset, which improves the accuracy and robustness of the subsequent classifiers. In the second 

stage, tumor classification is performed based on the optimal SVM prediction model. In the 

proposed PSO-SVM system, we take into account the ACC of SVM, the number of SVs and the 

number of features simultaneously in designing the objective function to exploit the maximum 

generalization capability of SVM. The three sub-objectives are summed into one single objective 

function by linearly weighting. In order to further balance the local and global search in PSO, the 

adaptive control parameters (including TVAC and TVIW) are introduced. The effectiveness of the 

proposed PSO-SVM diagnostic system is examined in terms of classification accuracy on the 

WBCD database taken from UCI machine learning repository. Compared with the grid search 

based method, our proposed PSO-SVM can not only obtain much more appropriate model 

parameters and discriminative feature subset, but also generate fewer numbers of SVs, giving high 

predictive accuracy. If it is compared with classification results of other methods in literature, our 

result can be regarded as a promising success.  

The remainder of this paper is organized as follows. Section 2 offers brief background 

knowledge on SVM. The description of the PSO is presented in Section 3. In section 4 the 

detailed implementation of the PSO-SVM diagnostic system is presented. Section 5 describes the 



experimental design. The experimental results and discussion of the proposed approach are 

presented in Section 6. Finally, Conclusions and recommendations for future work are 

summarized in Section 7. 

 

2 Support vector machines for classification  

Support vector machine (SVM), originally developed by Vapnik [22, 33], is based on the 

Vapnik-Chervonenkis (VC) theory and structural risk minimization (SRM) principle [22, 34]. It 

tries to find the tradeoff between minimizing the training set error and maximizing the margin, in 

order to achieve the best generalization ability and remains resistant to over fitting. Additionally, 

one major advantage of the SVM is the use of convex quadratic programming, which provides 

only global minima hence avoid being trapped in local minima. For more details, one can refer to 

[22, 24], which give a complete description of the SVM theory.   

Let us consider a binary classification task:{ , }, 1, ... , { 1,1},
d

i i i ix y i l y x R    , where ix are data 

points and iy are corresponding labels. They are separated with a hyper plane given by 0
T

w x b  , 

where w is a d-dimensional coefficient vector which is normal to the hyper plane and b is the 

offset from the origin. The linear SVM finds an optimal separating margin by solving the 

following optimization task: 
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By introducing Lagrangian multipliers ( 1, 2, , )
i

i n  , the primal problem can be reduced to a 

Lagarangian dual problem: 
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Obviously, it is a quadratic optimization problem (QP) with linear constraints. From Karush 

Kuhn–Tucker (KKT) condition, we know:  

 ( ) 1 0
T

i i i
y b   w x .            (5) 

If 0
i

  , the corresponding data points are called SVs. Hence the solution takes the form as 

follow: 
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where n is the number of SVs. Now b can be obtained from ( ) 1 0,
T

i i
y b  w x where i

x  are 

SVs.  After w and b are determined, the linear discriminant function can be given by 
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In most cases, the two classes can not be linearly separated. In order to make the linear learning 

machine work well in non-linear cases, a general idea is introduced. That is, the original input 

space can be mapped into some higher-dimensional feature space where the training set is linearly 

separable. With this mapping, the decision function can be expressed as: 
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where 
T

i
x x in the input space is represented as the form of ( ) ( )

T

i
 x x in the feature space. The 

functional form of the mapping ( )
i

 x  does not need to be known since it is implicitly defined by 

one selected kernel: ( , ) ( ) ( )
T

i j i j
K  x x x x . Thus, the decision function can be expressed as 

follows: 
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In general, any positive semi-definite functions that satisfy the Mercer’s condition can be as 

kernel functions [35]. There exit many kernel functions that could be used by the SVM. For 

example, the linear kernel is defined as the dot product of two feature vectors in some expanded 

feature space. Furthermore, two most widely used kernels in SVM are the polynomial kernel and 

the Gaussian kernel (or Radial-Basis function, RBF), which are respectively defined as:  

    ( , ) (1 )
T p

i j i j
K  x x x x                          (10)  

       
2

( , ) exp( )
i j i j

K   x x x x                         (11) 

where p is the polynomial order, and   is the predefined parameter controlling the width of the 

Gaussian kernel. 

It has been proved that proper model parameters setting can improve the SVM classification 

accuracy [36]. Values of parameters in SVM have to be carefully chosen in advance. These 

parameters include the followings: (1) regularization parameter C , which determines the tradeoff 

cost between minimizing the training error and the complexity of the model; (2) parameter gamma 

(   or p ) of the kernel function which defines the non-linear mapping from the input space to 

some high-dimensional feature space; (3) a kernel function used in SVM, which constructs a 

non-linear decision hyperplane in an input space. This investigation is going to consider the 

Gaussian kernel to find out the optimal parameter values of RBF kernel function (i.e., C  and 
 ). Other kernel parameters can also be tackled in the same way by using our developed method.  

3 Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) is inspired by the social behavior of organisms such as bird 

flocking and fish schooling, which was first developed by Kennedy and Eberhart [37] [38]. The 

algorithm seeks to explore the search space by a population of individuals or particles. Each 

particle represents a single solution with a velocity which is dynamically adjusted according to its 

own experience and that of its neighboring companions. And the population of particles is updated 

based on each particle’s previous best performance and the best particle in the population. In this 

way, PSO combines local search with global search for balancing the exploration and exploitation. 

Considering a d-dimensional search space, the ith particle is represented as ,1 ,2 ,
( , , , )

i i i i d
X x x x , 

and its according velocity is represented as ,1 ,2 ,
( , , , )

i i i i d
V v v v .The best previous position of the 

ith particle that gives the best fitness value is represented as ,1 ,2 ,
( , , , )

i i i i d
P p p p . The best 

particle among all the particles in the population is represented as ,1 ,2 ,
( , , , )

g g g g d
P p p p . In 

every iteration, each particle updates its position and velocity according to the two best values.  

3.1 PSO with inertia weight  

In order to reduce the dependence of the search process on the hard bounds of the velocity, the 

concept of an inertia weight w was introduced in the PSO algorithm [39]. The velocity and 

position are updated as follows: 
1
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where 1
c  and 2

c  are acceleration coefficients, which define the magnitude of the influences on 

the particles velocity in the directions of the personal and the global optima, respectively. To 

better balance the search space between the global exploration and local exploitation, 

Time-Varying Acceleration Coefficients (TVAC) have been introduced in [40]. This concept will 

be adopted in this study to ensure the better search for the solutions. The core idea of TVAC is that 

1
c  decreases from its initial value of 1i

c  to 1 f
c , while 2

c  increases from 2 i
c  to 2 f

c  using the 

following equations as in [40]. TVAC can be mathematically represented as follows: 
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where 1 f
c , 1i

c , 2 f
c  and 2 i

c  are constants, t  is the current iteration of the algorithm and max
t  is 



the maximum number of iterations.  

In addition, 1
r  and 2

r  in Eq. (12) are random numbers, generated uniformly in the range 

[0, 1]. The velocity ,i j
v  is restricted to the range max max

[ , ]v v , in order to prevent the particles 

from flying out of the solution space. generally, m ax
v  is suggested to set to be 10-20% of the 

dynamic range of the variable in each dimension [41]. w is the inertia weight, which is used to 

balance the global exploration and local exploitation, a large inertia weight facilitates the global 

search, while a small inertia weight facilitates the local search. In order to reduce the weight over 

the iterations allowing the algorithm to exploit some specific areas, the inertia weight w is updated 

according to the following equation:  
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min max min

max

( )
( )

t t
w w w w

t


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where max
w , min

w  are the predefined maximum and minimum values of the inertia weight w, t  

is the current iteration of the algorithm and max
t  is the maximum number of iterations. Usually 

the value of w  is varied between 0.9 and 0.4. Eq. (16) is also known as the time varying inertia 

weight (TVIW) [39], which has been shown to significantly improve the performance of PSO [42], 

since TVIW makes PSO have more global search ability at the beginning of the run and have 

more local search ability near the end of the run.  

3.2 Discrete Binary PSO  

  PSO was originally introduced as an optimization technique for continuous space. in order to 

extend the application to discrete spaces, Kennedy and Eberhart [43] proposed a discrete binary 

version of PSO where a particle moves in a state space restricted to zero and one on each 

dimension, in terms of the changes in probabilities that a bit will be in one state or the other. If the 

velocity is high it is more likely to choose 1, and lower values favor choosing 0. A sigmoid 

function is applied to transform the velocity from continuous space to probability space: 
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1
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1 exp( )
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
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                                               (17) 

The velocity update Eq. (12) keeps unchanged except that , ,
,

i j i j
x p  and ,g j

p  {0,1} , and in order 

to ensure that bit can transfer between 1 and 0 with a positive probability m ax
v  was introduced to 

limit ,i j
v . In practice, m ax

v  is often set as 4. The new particle position is updated using the 

following rule: 
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
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where ,
( )

i j
sig v  is calculated according to Eq. (17), and rnd  is a uniform random number in the 

range [0, 1].  

4 Proposed PSO-SVM classification system  

We have proposed the PSO-SVM classification system for breast cancer diagnosis, which 

combines the parameter optimization with the feature selection together, in order to acquire the 

highest classification accuracy. The proposed system consists of two stages. In the first stage, both 

the SVM parameters optimization and the feature selection are dynamically conducted by 

implementing PSO algorithm, the pseudo-code of this stage, termed as 

Inner_Parameter_Optimization, is given bellow: 

______________________________________________________________________________ 

Pseudo-code for the Inner_Parameter_Optimization procedure 

Begin  

    Randomly initialize particle swarm;  

    While(number of generations or the stopping criterion is not met) 

For i = 1 to number of particles 

Train SVM model with the randomly chosen features by using 5-fold CV; 

Evaluate fitness of particle swarm; 

/* save the global optimal fitness as gfit, personal optimal fitness as pfit,  



global optimal particle as gbest and personal optimal particle as pbest.*/ 

         /* Update the velocity of continuous and discrete dimensions*/ 
1

, , 1 1 , , 2 2 , ,
( ) ( )

n n n n n n

i j i j i j i j g j i j
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           If 1

, m in m ax
( [ , ] )

n

i j
v V V




1 1

, m ax , m in
m ax(m in( , ), )

n n

i j i j
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 
  Endif; 

          /*Update the position of continuous dimensions*/  
1 1
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 
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           /*Update the position of discrete dimensions*/   
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1
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           If 

,
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i j
rnd sig v  1

,
1

n

i j
x


  Else 1

,
0

n

i j
x


  Endif; 

/* Update the personal optimal fitness (pfit) and personal optimal position (pbest) by 

comparing the current fitness value (cfit) with the pfit stored in the memory.*/ 

           If (cfit > pfit)  

pfit = cfit; 

pbest = current position; 

Endif;  

         Endfor;    

 /*Get the maximum value (maxlocal) and index from the swarm of local 

fitness(local_fit)and update the global optimal fitness (gfit) and global optimal 

particle (gbest) by comparing the gfit with the optimal pfit from the whole 

population */ 

            [maxlocal,index] = max(local_fit);  

If (maxlocal > gfit)  

gfit = maxlocal; 

gbest = local_fit(index); 

Endif; 
            Next generation until stopping criterion; 

        Endwhile  

/*Get the best values of parameters (bestc and bestg) and the optimal feature 

subset(optimal_fsset)from gbest*/  

          bestc = gbest (1); 

bestg = gbest (2);  

optimal_fsset = gbest(3:n+2); 

          Return bestc, bestg, optimal_fsset; 

End.  

______________________________________________________________________________ 

 

In the second stage, SVM model performs the classification tasks using these optimal values 

and selected features via 10-fold CV technique, the pseudo-code of this stage, termed as 

Outer_Performance_Estimation, is given bellow: 

______________________________________________________________________________ 

Pseudo-code for the Outer_Performance_Estimation procedure 

/*performance estimation by using k-fold CV where k = 10*/ 

Begin 

For j = 1:k   

Training set = k-1 subsets; 

Testing set = remaining subset; 

Train the SVM classifier on the training set using the parameters and feature subsets obtained 

from Inner_Parameter_Optimization (); 

Test it on the testing set; 

Endfor; 



Return the average classification accuracy rates of SVM over j testing set; 

End. 

_____________________________________________________________________________ 

 

PSO-SVM takes into consideration three fitness values for parameter optimization and feature 

selection. The first one is the ACC of SVM, the second one is the number of SVs and the last one 

is the number of selected features. In this way, the PSO-SVM can not only achieve the high 

classification accuracy, but also obtain the good capability of generalization. The PSO-SVM 

classification system for breast cancer diagnosis is constructed through the following main steps: 
 Step 1: Encode the particle with n+2 dimensions. The first two dimensions are C  and   

which are continuous values. The remaining n dimensions is Boolean features mask, which 

is represented by discrete value, 1 indicates the feature is selected, and 0 represents the 

feature is discarded.  
 Step 2: Initialize the individuals of the population with random numbers. Meanwhile, 

specify the PSO parameters including the lower and upper bounds of the velocity, the size 

of particles, the number of iterations, etc.   
 Step 3: Train the SVM model with the selected feature subset in Step 2.  
 Step 4: The particle with high classification accuracy and the small number of selected 

features can produce a high fitness value. In addition, the particle with smaller number of 

SVs can achieve higher classification accuracy, since the number of SVs is proportional to 

the generalization error of the SVM classifier [22]. Thus in this study, we take all of them 

into account to design the fitness function. The fitness value is calculated according to the 

following multi-objective function: 
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where variable avgacc in the first objective function 1
f  represents the average testing 

accuracy achieved by the SVM classifier via 10-fold CV, where K=10. Noted that here the 

10-fold CV is employed to do the model selection that is different from the outer loop of 

10-fold CV, which is used to do the performance estimation. nsv  and m  in the second 

function 2
f  indicate the number of SVs and training data, respectively. In the third 

objective function 3
f , i

ft  is the value of feature mask (‘1’ represents that feature is 

selected and ‘0’ indicates that feature is discarded), n  is the total number of features. The 

weighted summation of the three sub-objective functions is selected as the final objective 

function. In f , variable   is the weight for SVM classification accuracy,   indicates 

the weight for the number of SVs, and   represents the weight for the selected features. 

The weight can be adjusted to a proper value depends on the importance of the 

sub-objective function. Eq. (19) means that average accuracy rates, the number of SVs and 

feature subset length have different significance for the classification performance. 

According to our preliminary experiments, the classification performance is more depend 

on the average accuracy rates and the number of SVs than the number of selected features, 

so the value   and   are selected as bigger than that of  . Generally, the weight is set 

to be constant value. After many tests, we found that the linearly increasing/decreasing 

function can further improve the classification performance over most datasets. Thus, we 

define the value of weight as the linearly increasing/decreasing function varying along with 

the iterations. They are defined as 1 2 2

m ax

( )
t

t
      , 1 2 2

m ax

( )
t

t
      , 

1 2 2

m ax

( )
t

t
      , respectively. 

Upon finishing the computation of the fitness value, we save the global optimal fitness 



as gfit, personal optimal fitness as pfit, global optimal particle as gbest and personal optimal 

particle as pbest. 
 Step 5: Increase the number of iteration. 
 Step 6: Increase the number of population. Update the position and velocity of C  and   

in each particle according to Eqs. (12-13), and the features in each particle according to Eqs. 

(12,17-18).  
 Step 7: Train the SVM model with the selected feature subset in Step 6 and calculate the 

fitness value of each particle according to Eq. (19). 
 Step 8: Update the personal optimal fitness (pfit) and personal optimal position (pbest) by 

comparing the current fitness value with the pfit stored in the memory. If the current fitness 

is dominated by the pfit stored in the memory, then keep the pfit and pbest in the memory; 

otherwise, replace the pfit and pbest in the memory with the current fitness value and 

particle position. 
 Step 9: If the size of the population is reached, then go to Step 10. Otherwise, go to Step 6. 
 Step 10: Update the global optimal fitness (gfit) and global optimal particle (gbest) by 

comparing the gfit with the optimal pfit from the whole population, If the current optimal 

pfit is dominated by the gfit stored in the memory, then keep the gfit and gbest in the 

memory; otherwise, replace the gfit and gbest in the memory with the current optimal pfit 

and the optimal pbest from the whole population.      
 Step 11: If the stopping criteria are satisfied, then go to Step 12. Otherwise, go to Step 5. 

The termination criteria are that the iteration number reaches the maximum number of 

iterations or the value of gfit does not improve after 100 consecutive iterations.  
 Step 12: Get the optimal C ,   and the feature subset from the best particle (gbest). 

5 Experimental design  

 5.1 Data Description 

In this study, we have performed our conduction on the Wisconsin Breast Cancer Dataset 

(WBCD) taken from UCI machine learning repository (UCI Repository of Machine Learning 

Databases). The dataset contains 699 instances taken from needle aspirates from patients’ breasts, 

of which 458 cases belong to benign class and the remaining 241 cases belong to malignant class. 

It should be noted that there are 16 instances which have missing values, in this study all the 

missing values are replaced by the mean of the attributes. Each record in the database has nine 

attributes. These nine attributes were found to differ significantly between benign and malignant 

samples. The nine attributes listed in Table 1 are graded 1-10, with 10 being the most abnormal 

state. The class attribute was represented as 2 for benign and 4 for malignant cases. 

 

Table 1 The detail of the nine attributes of breast cancer data 

Label Attribute Domain 

F1 Clump Thickness 1-10 

F2 Uniformity of Cell Size 1-10 

F3 Uniformity of Cell Shape 1-10 

F4 Marginal Adhesion 1-10 

F5 Single Epithelial Cell Size 1-10 

F6 Bare Nuclei 1-10 

F7 Bland Chromatin 1-10 

F8 Normal Nucleoli 1-10 

F9 Mitoses 1-10 

 

5.2 Experimental setup 

The proposed PSO-SVM diagnostic system was implemented using MATLAB platform. For 

SVM, LIBSVM implementation was utilized, which is originally developed by Chang and Lin 



[44]. We implemented the PSO algorithm from scratch. The empirical experiment was conducted 

on Intel Quad-Core Xeon 5130 CPU (2.0 GHz) with 4GB of RAM. 

Normalization is employed to avoid feature values in greater numerical ranges dominating 

those in smaller numerical ranges, as well as to avoid the numerical difficulties during the 

calculation [30]. Usually, the data could be normalized by scaling them into the interval of [-1, 1] 

according to the Eq. (20), where x is the original value, x  is the scaled value, a
max  is the 

maximum value of feature a, and a
min  is the minimum value of feature a. 

2 -1a

a a

x - min
x = ( )*

max - min
                                                      (20) 

In order to guarantee the valid results, the k-fold CV presented by Salzberg [45] was used to 

evaluate the classification accuracy. This study set k as 10, i.e., the data was divided into ten 

subsets. Each time, one of the ten subsets is used as the test set and the other nine subsets are put 

together to form a training set. Then the average error across all ten trials is computed. The 

advantage of this method is that all of the test sets are independent and the reliability of the results 

could be improved. We attempted to design our experiment using two loops. The inner loop is 

used to determine the optimal parameters and best feature subset. The outer loop is used for 

estimating the performance of the SVM classifier. In order to keep the same proportion of benign 

and malignant cases of each set as that of the entire data set, here a stratified 10-fold CV is 

employed as the outer loop and a stratified 9-fold CV is used for the inner loop. It is referred to as 

the nested stratified 10-fold CV, which is also used in [46] for the microarray gene data analysis. 

It is worth noting that the test data used in the test stage is isolated from the training data used in 

the training stage, namely the best parameter pair ( C ,  ) and feature subset are obtained from the 

training dataset, and then the test dataset is used to obtain the average CV accuracy in the testing 

stage, thus preventing it from obtaining the over-estimate the accuracy. 

The detail parameter setting for PSO-SVM is set as follows. The number of the iterations and 

particles is set to 200 and 30, respectively. The searching ranges for C  and   are as follows: 

[2 ^ ( 5), 2 ^ (15)]C    and [2 ^ ( 15), 2 ^ (5)]   . m ax
v  are set about 10% of the dynamic range of 

the variable on each dimension for the continuous type of dimensions (as suggested in [41]). For 

the discrete type particle for feature selection, max max
[ , ]v v  is set as [−6, 6]. As suggested in 

[40], 1 1 2 2
2.5, 0.5, 0.5, 2.5

i f i f
c c c c    .According to our preliminary experiment, max

w  and min
w  

are set to 0.9 and 0.4, and the parameters of ,   and   are taken as 

1
  0.3, 2

0.6  , 1
0.7  , 2

0.3  , 1
0  , 2

0.1  , respectively.  

 

5.3 Measure for Performance Evaluation 

Sensitivity, specificity, total classification accuracy (ACC) and the area under the Receiver 

Operating Characteristic curve (AUC) were used to test the performance of the proposed 

PSO-SVM model. Before defining these measures, we introduced the concept of confusion matrix, 

which is presented in Table 2. Where TP is the number of true positives, which means that some 

cases with ‘positive’ class is correctly classified as positive; FN, the number of false negatives, 

which means that some cases with the ‘positive’ class is classified as negative; TN, the number of 

true negatives, which means that some cases with the ‘negative’ class is correctly classified as 

negative; and FP, the number of false positives, which means that some cases with the ‘negative’ 

class is classified as positive.  

 

Table 2 Confusion matrix for breast cancer diagnosis 

 Predicted positive Predicted negative  

Actual positive  True Positive (TP) False Negative (FN) 

Actual negative False Positive (FP) True Negative (TN) 

 

According to the confusion matrix, ACC, sensitivity and specificity are defined as follows:  

100%
TP TN

ACC
TP FP FN TN


 
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                    (21) 



100%
TP

Sensitivity
TP FN

 


                  (22)  

100%
TN

Specificity
FP TN

 


                  (23)  

The receiver operating characteristic (ROC) curve is a graphical display that gives the measure 

of the predictive accuracy of a logistic model. The curve displays the true positive rate and false 

positive rate. AUC is the area under the ROC curve, which is one of the best methods for 

comparing classifiers in two-class problems.  

5.4 Comparative study 

In this study, we attempt to conduct a performance comparison between the proposed 

PSO-SVM system and the grid search method with feature selection by the F-score [47], termed 

FS-SVM. In FS-SVM method, the importance of each feature is measured by F-score, and the 

SVM parameters are optimized by grid search algorithm. As mentioned before, the grid search is 

a common method for searching for the best C  and  . Fig. 1 shows the procedure of the SVM 

training using grid search. The searching space of parameters C  and   are set to  
5 3 15

{2 , 2 , , 2 }C
 

  and 
15 13 1

{2 , 2 , , 2 }
 

 , respectively. There will be 11 9 99   parameter 

combinations of ( , )C   are tried and the one with the best CV accuracy is chosen as the 

parameter values. Here, 5-fold CV is adopted to conduct the parameter optimization. Then the 

best parameter pair ( , )C   is used to create the model for training. After obtain the predictor 

model, the prediction is conducted on each testing set accordingly. F-score is a fundamental and 

simple method that measures the distinction between two classes with real values. Given the 

training vectors if the number of positive and negative instances are n
  and n

 , respectively, 

then the F-score of the th
i  feature is explained as follows [47]:  
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where i
x , 

( )

i
x


,

( )

i
x


 are the averages of the th

i  feature of the whole, positive, and negative 

datasets, respectively.
,

( )

k i

x


 is the th
i feature of the th

k  positive instance, and  
,

( )

k i

x


 is the th
i  

feature of the th
k  negative instance. The numerator shows the discrimination between the 

positive and negative sets, and the denominator defines the one within each of the two sets. The 

larger the F-score is, the more likely this feature is more discriminative [47]. In this study, we 

select features with high F-score according to following procedure. Firstly, the data was divided 

into ten subsets via stratified k-fold CV. Each time, one of the k subsets is used as the testing set 

and the other k-1 subsets are used as the training set. Then the average classification accuracy 

across all k trials is computed. The specific procedure is as follows [47]: 

Step 1. Calculate F-score of every feature. 

Step 2. Sort F-score, and Set possible number of features according to the following formula:  

[ / 2 ], {0,1, 2, , }
j

f n j l  .                                         (25) 

where l  is an integer with / 2 1
l

n  .  

Step 3. For each f  (threshold), do the following: 

a) Drop features with F-score below this threshold. 

b) Randomly split the training set into Xtrain and Xtest using 5-fold CV. Do the following 

step for each fold: 

c) Let Xtrain be the new training data. Perform SVM training procedure (as shown in Fig. 1) 

to obtain a predictor; use the predictor to predict Xtest. 

d) Calculate the average classification accuracy.  

Step 4. Choose the threshold with the highest average classification accuracy. 

Step 5. Drop features with F-score below the selected threshold. Rerun SVM training procedure 

(as shown in Fig. 1) on the remaining testing set and Measure the classification accuracy on each 

testing set. 



 

Fig.1 The procedure of SVM training using grid search method 
 

6 Experimental results and discussions 

To evaluate the effectiveness of the proposed PSO-SVM system for breast cancer, we conduct 

experiments on the WBCD database. Table 3 shows classification accuracy rate, number of 

selected features, and optimal pairs of ( C ,  ) for each fold using PSO-SVM and FS-SVM. It can 

be observed that, the average accuracy rates achieved by the developed PSO-SVM system are 

much better than that of FS-SVM. The average classification accuracy rate of PSO-SVM is 

99.28%, while the average classification accuracy rate of FS-SVM is 96.99%. Furthermore, the 

number of the optimal feature subset obtained by the PSO-SVM is much smaller than that of 

FS-SVM. For the PSO-SVM method, the average number of the selected features via 10-fold CV 

is about 5, while the average number of the selected features is about 9 for the FS-SVM method. 

The detailed results of the sensitivity, specificity and AUC for WBCD database are listed in Table 

4. It can be clearly seen that the average values of sensitivity, specificity and AUC achieved by 

PSO-SVM are much better than those of FS-SVM. Moreover, it is interesting to see that the 

standard deviation for the acquired average classification rates, sensitivity and AUC by 

PSO-SVM is much smaller than that of FS-SVM, which indicates consistency and stability of the 

proposed system. 

 

Table 3 Classification accuracy rate, number of selected features, and optimal parameter settings 

for WBCD database using PSO-SVM and FS-SVM 

Fold PMOPSO-SVM FS-SVM 

 C    ACC(%) #features C    ACC(%) #features 

#1 23992.103 0.001 98.571 4 1.000 0.031 94.285 9 

#2 29804.780 10.507 100.000 5 0.250 0.001 98.571 9 

#3 25769.629 15.904 100.000 5 1.000 0.001 98.571 9 

#4 30374.823 0.050 98.550 6 4.000 0.000 95.714 9 

#5 10161.191 13.454 100.000 5 1.000 0.007 95.714 9 

#6 10505.758 0.001 98.571 4 0.250 0.007 97.142 9 

#7 15879.893 12.110 98.571 5 0.250 0.001 95.714 9 

#8 8335.270 0.001 100.000 5 1.000 0.001 98.571 9 

#9 10743.829 8.948 98.571 6 16.000 0.001 97.142 9 

#10 2330.583 12.156 100.000 5 1.000 0.001 98.571 9 



Avg. 16789.785 7.313 99.283 5.0 2.575 0.005 96.999 9.0 

Dev. 9932.049 6.532 0.755 0.666 4.840 0.009 1.572 0.000 
Avg.

 The average value over 10-fold cross validation. 
Dev.

 The standard deviation over 10-fold cross validation. 

 

Table 4 Sensitivity, specificity and AUC for WBCD database using PSO-SVM and FS-SVM 

Fold PMOPSO-SVM FS-SVM 

 Sensitivity 

(%) 

Specificity 

(%) 

AUC 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

AUC 

(%) 

#1 100.00 97.73 98.86 86.36 97.92 92.14 

#2 100.00 100.00 100.00 100.00 97.73 98.86 

#3 100.00 100.00 100.00 100.00 97.73 98.86 

#4 95.24 100.00 97.62 90.91 97.92 94.41 

#5 100.00 100.00 100.00 90.91 97.92 94.41 

#6 100.00 97.73 98.86 96.30 97.67 96.99 

#7 100.00 97.73 98.86 90.91 97.92 94.41 

#8 100.00 100.00 100.00 100.00 97.73 98.86 

#9 100.00 97.73 98.86 96.30 97.67 96.99 

#10 100.00 100.00 100.00 100.00 97.73 98.86 

Avg. 99.52 99.09 99.31 95.17 97.79 96.48 

Dev. 1.51 1.17 0.82 5.03 0.11 2.47 
Avg.

 The average value over 10-fold cross validation. 
Dev.

 The standard deviation over 10-fold cross validation. 

 

In order to verify the effectiveness of the proposed method, a paired t test on the average 

classification accuracy rates, sensitivity, specificity and AUC is used. As shown in Table 5, the 

p-value is much smaller than the prescribed statistical significance level of 0.05. Therefore, it is 

evident that the proposed PSO-SVM system obtains more appropriate parameters and feature 

subset, performing significantly better than FS-SVM method. The better performance of the 

proposed method can be attributed to all features, i.e., adaptive control parameters (including 

TVIW and TVAC), and consideration of the three sub-objectives (ACC, number of SVs and 

selected features) in the objective function. 

 

Table 5 Paired t test of PSO-SVM vs.FC-SVM on the WBCD database 
Performance metric PSO-SVM FS-SVM Paired t-test 

 p-value 

ACC (%) 99.3  0.75 96.9  1.57 0.0002 

Sensitivity (%) 99.5  1.51 95.2  5.03 0.0185 

Specificity (%) 99.1  1.17 97.8  0.11  0.0069 

AUC (%) 99.3  0.82 96.5  2.47 0.0051 

Confidence level 0.05.   

 

To explore how many features and what features were selected during the feature selection 

procedure, we further conducted an experiment on WBCD database to investigate the detail of the 

feature selection mechanism of the PSO algorithm. The selected feature in 10 folds for WBCD 

database is shown in Table 6. The original numbers of features of WBCD database is 9. As shown 

in Table 6, not all features are selected for classification after the feature selection. The average 

number of selected features by PSO-SVM is 5.0, and its most important features are Clump 

Thickness, Uniformity of Cell Shape, Marginal Adhesion, Bare Nuclei and Mitoses, which can be 

found in the frequency of selected features of 10-fold CV as shown in Fig. 2. 
   

Table 6 Features selected for WBCD database by PSO-SVM 
Fold  Selected features 



#1 Clump Thickness, Marginal Adhesion, Bland Chromatin, Normal Nucleoli 

#2 Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape, Marginal Adhesion, Mitoses 

#3 Clump Thickness, Uniformity of Cell Shape, Marginal Adhesion, Bare Nuclei, Mitoses 

#4 Clump Thickness, Uniformity of Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Mitoses 

#5 Clump Thickness, Marginal Adhesion, Bare Nuclei, Bland Chromatin, Mitoses 

#6 Clump Thickness, Uniformity of Cell Shape, Bare Nuclei, Mitoses 

#7 Clump Thickness, Uniformity of Cell Shape, Marginal Adhesion, Bare Nuclei, Bland Chromatin 

#8 Clump Thickness, Uniformity of Cell Shape, Bare Nuclei, Normal Nucleoli, Mitoses 

#9 Clump Thickness, Uniformity of Cell Shape, Marginal Adhesion, Bare Nuclei, Normal Nucleoli, Mitoses 

#10 Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape, Bare Nuclei, Mitoses 

 

 
Fig.2 The frequency of selected features in 10-fold CV on the WBCD database 

 

  To give some idea about how the number of SVs influences the performance of PSO-SVM and 

FS-SVM, SVs were calculated in running the testing of 10-fold CV. Table 7 shows the number of 

SVs needed for training via the 10-fold CV by PSO-SVM and FS-SVM respectively. It can be 

seen that the FS-SVM method has generated much more SVs than those of PSO-SVM. Because it 

has been shown by Vapnik [22] that the number of SVs is proportional to the generalization error 

of the SVM classifier. That is the reason why our developed system has better generalization 

capability. Note that the number of SVs is not integers, because they are the average of the 10-fold 

CV.   

 

Table 7 Number of SVs produced by PSO-SVM and FS-SVM 

#SVs        

Fold 

PSO-SVM FS-SVM 

1# 45 71 

2# 41 68 

3# 40 70 

4# 43 71 

5# 44 68 

6# 43 67 

7# 42 68 

8# 45 68 

9# 41 70 

10# 39 72 

Average 42.3 69.3 



 

Analytical results reveal that the proposed PSO-SVM system has excellent generalization 

capability. Since grid search is a local search method which is vulnerable to local optimum, and 

F-score is just a simple way to determine important features, it does not reveal mutual information 

among features [47]. In addition, as shown in Table 8, the PSO-SVM is also compared with other 

approaches developed in the literature to show the effectiveness of our approach. From the table, 

it is evident that our developed PSO-SVM diagnostic system has comparable or even better 

classification accuracy than those achieved by other SVM classifiers on WBCD database, and 

obtain much better classification accuracy than those of non-SVM methods proposed in previous 

studies.  

 

Table 8 Classification accuracies obtained with our method and other classifiers from literature  

Study Method Accuracy (%) 

Quinlan (1996) [2] C4.5 94.74 (10×CV) 

Hamilton et al. (1996) [3] RIAC 94.99 (10×CV)  

Ster and Dobnikar (1996) [4] LDA 96.80 (10×CV) 

Bennett and Blue (1998) [5] SVM 97.20 (5×CV)  

Nauck and Kruse (1999) [6] NEFCLASS 95.06 (10×CV) 

Penna-Reyes and Sipper(1999) 

[7] 

Fuzzy-GA 97.36 (train: 75%-test: 25%)  

Setiono (2000) [8] Neuro-Rule 98.10 (train: 50%-test: 50%)  

Goodman et al. (2002) [9] Optimized-LVQ 96.70 (10×CV)  

Goodman et al. (2002) [9] Big-LVQ 96.80 (10×CV)  

Goodman et al. (2002) [9] AIRS 97.20 (10×CV)  

Abonyi and Szeifert (2003) [10] SFC 95.57 (10×CV) 

Ubeyli (2005) [11] ME 98.85(train: 37%-test: 63%) 

Seral Şahan et al. (2007) [12] Fuzzy-AIS-knn 99.14 (10×CV) 

Ubeyli (2007) [13] SVM 99.54 (train: 37%-test: 63%)  

Polat and Günes (2007) [14] LS-SVM 98.53 (10×CV) 

Akay (2009) [15] SVM + Fscore 99.51 (train: 80%-test: 20%) 

Ubeyli (2009) [16]  ANFIS 99.08(train: 37%-test: 63%) 

Karabatak and Cevdet (2009) [17] AR + NN 97.40 (3×CV) 

Huang et al. (2010) [18] SBS-BPPSO 97.51 (10×CV)  

 SBS-BPLM 98.83 (10×CV)  

Marcano-Cedeno et al.(2011) [19] AMMLP 99.26 (train: 60%-test: 40%) 

Fan et al. (2011) [20] CBFDT 98.90 (train: 75%-test: 25%) 

Chen et al.(2011) [21] RS_SVM 100.00(train:80%-test:20%)

(highest) 

  96.87(train: 80%-test: 20%) 

(average) 

Our Study PSO-SVM 99.3 (10×CV) 

 

According to the above study, it make us be more convinced that the proposed diagnostic 

system can be very helpful in assisting the physicians to make the accurate diagnosis on the 

patients and will show great potential in the area of clinical breast cancer diagnosis. In addition, a 

combination of five features (i.e., ‘Clump Thickness’, ‘Uniformity of Cell Shape’, ‘Marginal 

Adhesion’, ‘Bare Nuclei’ and ‘Mitoses’) for classifying breast tumors is identified to be most 

informative. It implies that these five features are worthwhile to be taken close attention by the 

physicians when the final decision is made.  

7 Conclusions and future work 

This work has explored a new diagnostic system, PSO-SVM, for breast cancer diagnosis. The 

PSO-SVM diagnostic system is proposed underlying the swarm intelligent framework. The main 

novelty of this paper lies in the proposed PSO-based approach, which aims at maximizing the 

generalization capability of the SVM classifier by simultaneously tackling the kernel parameter 

setting and identifying the most discriminative feature subset for breast cancer diagnosis. In 

designing the objective function, classification accuracy, number of SVs and number of features 



are simultaneously taken into consideration. Moreover, the developed system is adaptive in nature 

attributed to adaptive control parameters (including TVIW and TVAC). There are two distinct 

strengths for the proposed PSO-SVM system: one is its ability to build an interpretable diagnostic 

model because smaller numbers of features are used. The other is its ability to build an optimal 

prediction model because all model parameters are optimized. Particularly, through a series of 

empirical experiments on the WBCD database, we show that the proposed PSO-SVM system not 

only maximizes the generalization performance but also selects most informative features. These 

indicate that the proposed PSO-SVM system can be used as a viable alternative solution to breast 

cancer diagnosis. 

The future investigation will pay much attention to evaluating the proposed system in other 

medical diagnosis problems. In addition, we should note that when dealing with the practical 

diagnosis problems, the PSO-based system costs a lot of CPU time, thus improving the 

performance of our proposed system using high-performance computing techniques will be 

involved in our future work as well. 
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