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Abstract

This paper aims to address one of many problems existing in current facial
recognition techniques using tensor (TensorFace Algorithm and its extension-
s). Current methods rasterize facial images as vectors, which result in a loss
of spatial structure information. In this paper, we propose a method called
Sp-Tensor to extend TensorFace by applying the sub-pattern technique. Ad-
vantages of the proposed method include: (1) a portion of spatial structure
and local information of facial images is preserved; (2) dramatically reduce
the computation complexity than other existing methods when building the
model. The experimental results demonstrate that Sp-Tensor has better
performance than the original TensorFace and Sp-PCA1, especially for facial
images with un-modeled views and light conditions.

Keywords: Face recognition, Tensor subspace analysis, Sub-pattern
technique, Multilinear analysis

1. Introduction

Over the past decades, extensive researches on face recognition have been
carried out in both the field of pattern recognition and artificial intelligence
and is widely used in many applications, including public securities, crime
and terrorist detections, etc. Normally, a 2D facial image is represented
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as a feature point in a high dimensional feature space and its perceptually
structure can be characterized by using a small set of meaningful parame-
ters. Thus, dimensionality reduction techniques are commonly used before
recognition.

PCA[1] is a widely used linear dimensionality reduction method which
maximizes the variance of projected features in the projective subspace.
LDA[2] encodes discriminant information by maximizing the ratio between
the inter-class and intra-class scatters. Different to LDA, max-min distance
analysis (MMDA)[3] duly considers the separation of all class pairs. To deal
with general case of data distribution, Bian and Tao [3] also extended M-
MDA to kernel MMDA (KMMDA). To overcome the non-smooth max-min
optimization problem with orthonormal constraints which is introduced by
MMDA/KMMDA, they developed a sequential convex relaxation algorith-
m to solve it approximately. Zhang et al. [4] proposed a patch alignment
framework, which consists of two stages: part optimization and whole align-
ment. The framework reveals that 1) algorithms are intrinsically different
in the patch optimization stage and 2) all algorithms share an almost i-
dentical whole alignment stage. As an application of this framework, they
developed a new dimensionality reduction algorithm, namely Discriminative
Locality Alignment (DLA), by imposing discriminative information into the
part optimization stage. DLA can 1) attack the distribution nonlinearity of
measurements; 2) preserve the discriminative ability; and 3) avoid the small-
sample-size problem. Li and Tao[5] proposed a simple exponential family
PCA (SePCA) to employ exponential family distributions to handle general
types of observations. The method also automatically discovers the number
of essential principal components by using Bayesian inference. Zhou et al.
[6] used elastic net to find the optimal sparse solution of the dimensionality
reduction algorithm which is based on manifold learning. However, these
methods consider a 2D facial image as a vector. This results in the loss of
spatial structure information of the facial images.

A 2D gray facial image is naturally represented by a 2nd-order tensor.
Wang et al. [7] proposed a Discriminant Tensor Subspace Analysis (DT-
SA) algorithm to extract discriminant features from the intrinsic manifold
structure of the 2nd-order tensor. They also treated a color facial image as
a 3rd-order tensor and proposed a tensor discriminant color space (TDC-
S) model[8] to seek an optimal color space for face recognition. Mu et al.[9]
treated a gray facial image as a 3rd-order tensor by using biologically inspired
features. They also employed a similar idea to recognize gait[10].
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Despite the achievements, facial recognition is still quite challenging due
to multiple factors which cannot be predicted or controlled, such as different
user identities, various user postures, facial expressions and varying lights.
These variations can be modeled as a tensor, which is a multidimensional
array, using multilinear analysis. A high order tensor can construct a mul-
tilinear structure to model the multiple factors of facial variation[11][12][13].
Each factor is arranged along a certain mode (dimension) of the tensor. A-
mongst all these factors, “user identities” is the key for facial recognition.
Hence, TensorFaces were proposed by Vasilescu et al. and were successfully
used for face recognition [14][15][16][17].

Recently, a great deal of interests are aroused in the field of face recog-
nition by using tensor[18][19][20][21][22][23]. Gao and Tian[18][21] utilized a
combination of multilinear and non-linear view manifold to present a multi-
view face recognition algorithm by improving on a TensorFace based method.
In order to overcome the difficulty of obtaining a complete training tensor,
Geng et al.[19] proposed a M2SA method which can work on a training ten-
sor with massive missing values. Rana et al.[22][20] presented the MPCA-JS
method by exploiting the interaction of all subspaces resulting from multi-
linear decomposition. This method not only offered the flexibility to handle
facial images at un-modeled lights or views, but also speeded up the recog-
nition process. Park et al.[23] proposed a novel tensor approach based on
an individual-modeling and nonlinear mapping method to deal with the dif-
ficulty in factoring the unknown parameters of a new test image, and solve
the person-identity parameter by tensor-based face recognition. However, all
these methods rasterize facial images as vectors. This leads to the loss of
some spatial structure information of the image.

To address the problem, the techniques of reorganizing input variables of
images have been extensively studied over the last decade. From the per-
spective of rearranging the pixels of images, these methods can be divided
into two main categories. In one category, the image is treated as a matrix
instead of a vector. 2D-PCA[24] employs single-sided transformation of the
image matrix (only transformation of the columns of the image matrix),
while (2D)2PCA[25][26] employs two-sided transformation (both columns
and rows). MatFLDA[27] encodes the discriminant information into 2D-
PCA to enhance the recognition accuracy. In the other category, an image
is partitioned into equally sized, non-overlapping blocks called sub-pattern.
Sp-PCA[28] applies PCA on the set of sub-patterns directly. UPCA[29] uni-
fies the methods into a single framework and illustrates that the traditional
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PCA, Sp-PCA and 2D-PCA are three specific forms of UPCA determined
by the number of sub-patterns k, which is a tradeoff between accuracy and
stability of the estimation of covariance. It also shows that the traditional
PCA and 2D-PCA are two specific forms of Sp-PCA.

Higher-order SVD (HOSVD) is regarded as a generalization of traditional
PCA or SVD for higher-order tensors. Having established a clear relationship
between HOSVD and traditional PCA, it is only natural to extend Sp-PCA
from vector to tensor, which improves its performance on multiple factors
affecting facial variation. In this paper, we introduce the sub-pattern tech-
nique into TensorFace to build a new model named Sp-Tensor (Sub-pattern
Tensor) and propose a recognition method using Sp-Tensor. The merits of
oufr model and method are:

1. A portion of spatial structure information is preserved and local infor-
mation of facial images is utilized not only in building the model, but
in the recognition process as well.

2. Existing sub-pattern methods of traditional PCA are extended to a
higher-order tensor to present the multiple factors of facial variation
by multilinear analysis or HOSVD;

3. Dramatically reduce the computation complexity than the existing
methods when building a model;

The rest of this paper is organized as follows: in Section 2, the definitions
related to tensor and higher-order SVD are described. The sub-pattern tech-
nique along with the building of Sp-Tensor model is introduced in Section 3;
Moreover, in the same section, a recognition method using the proposed mod-
el is covered and the details of extension from two existing TensorFace based
recognition methods to Sp-Tensor are discussed. In Section 4, the experi-
mental results are reported and analyzed. The conclusions and our future
work are discussed in Section 5.

2. Tensor Fundamentals

A tensor is a multidimensional array. More formally, a N th-order tensor
is an element of the tensor product of N vector spaces, each of which has its
own coordinate system. It is higher-order generalization of scalar (0th-order
tensor), vector (1st-order tensor), and matrix (2nd-order tensor). In this
paper, lowercase italic letters (a, b, ...) denote scalars, bold lowercase letters
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Figure 1: Unfolding of the (I1 × I2 × I3)-tensor A to the (I1 × I2I3)-matrix A(1), the
(I2 × I3I1)-matrix A(2), and the (I3 × I1I2)-matrix A(3) (I1 = I2 = I3 = 4).

(a, b, ..) denote vectors, bold uppercase letters (A, B, ...) denote matrices,
and calligraphic uppercase letters (A, B, ...) denote tensors.

The order of a tensor A ∈ RI1×I2×...×IN is N . An element of A is denoted
by Ai1i2...iN or ai1i2...iN , where 1 ≤ in ≤ In, n = 1, 2, . . . , N . The mode-n fibers
ofA are the In-dimensional vectors obtained fromA by fixing every index but
index in. The scalar product of two tensors A,B ∈ RI1×I2×...×IN , denoted by
⟨A,B⟩, is defined in a straightforward way as ⟨A,B⟩ def

=
∑

i1

∑
i1
. . .

∑
iN

ai1i2...iN bi1i2...iN .

The Frobenius norm of a tensor A is then defined as ∥A∥ def
=

√
⟨A,A⟩. We

introduce the following definitions[30][31] which are relevant to this paper.

Definition 1. The mode-n unfolding matrix of a Nth-order tensor A ∈
RI1×I2×...×IN , is a matrix A(n) ∈ RIn×In , which is the ensemble of vectors
in RIn obtained by keeping index in fixed and varying the other indices.
Here, In = (

∏
i̸=n Ii). We denote the mode-n unfolding matrix of A as A(n).

Fig. 1 shows an example of pictorial description of a third order tensor.

Definition 2. The mode-n product of a tensor A ∈ RI1×I2×...×IN by a matrix
U ∈ RJn×In , denoted byA×nU, is an (I1×I2×. . .×In−1×Jn×In+1×. . .×IN)-
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tensor of which the entries are given by:

(A×n U)i1i2...in−1jnin+1...iN
def
=

∑
in

ai1i2...in−1inin+1...iNujnin . (1)

The mode-n product of tensor and matrix can be expressed in terms of un-
folding matrices for simplicity purposes.

(A×n U)(n) = U ·A(n) (2)

Given a tensor A ∈ RI1×I2×...×IN and matrices U ∈ RJn×In ,V ∈ RJm×Im , the
mode-n product of tensor and matrix satisfies:

(A×n U)×m V = (A×m V)×n U = A×n U×m V (3)

By taking the standard multilinear algebra, any tensor D ∈ RI1×I2×...×IN

can be decomposed by the HOSVD [11] as

D = Z ×1 U1 ×2 U2 . . .×n Un . . .×N UN (4)

where Un(n = 1, 2, . . . , N), is an orthonormal mode matrix and contains the
ordered principal components for the nth mode. Z is the core tensor. The
decomposition is proceeded as:

1. For n = 1, . . . , N , compute matrix Un in Eq.(4) by computing the SVD
of the unfolding matrix D(n) and setting Un to be the left matrix of
the SVD.

2. Solve the core tensor as follows:

Z = D ×1 U
T
1 ×2 U

T
2 . . .×n U

T
n . . .×N UT

N (5)

3. Proposed approaches

3.1. Image partition for constructing sub-pattern image

In this paper, GLOCAL transform[32] is adopted to obtain the sub-
pattern image. Suppose that the size of each facial image FA is w × h. To
derive its sub-pattern image or its sub-pattern matrix A, each facial image
is initially partitioned into Ipat equally sized, non-overlapping sub-patterns.
Then each column of A can be obtained by raster-scanning a sub-pattern
into a vector with dimensions of Ipix = (w×h)/Ipat. In this way, a Ipat× Ipix
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Figure 2: GLOCAL transform

sub-pattern image A is obtained for each facial image. Note that the process-
ing of sub-patterns also follows the same raster-scan order. Fig. 2 shows a
demonstration of a GLOCAL transform (Fig. 2(a)), a facial image (Fig. 2(b))
and its corresponding sub-pattern image (Fig. 2(c)). Depending on the se-
quences of scanning the sub-patterns and the pixels in each sub-pattern,
there are four possible combinations for generating a sub-pattern image. We
choose to scan by row for both sub-patterns and pixels in each sub-pattern.
Nevertheless, it is easy to verify that the sub-pattern images derived from dif-
ferent scanning orders can be transformed into one another by row or column
permutations. That is, they are equivalent up to a multiplication of some
suitable permutation matrices. The GLOCAL transform can be generalized
from matrices to tensors. We can transform the tensor space from Rw×h to
RIpat×Ipix .

3.2. Sub-pattern based tensor (Sp-Tensor)

The Sp-Tensor is a multilinear extension of the subpattern-based PCA[28].
Given an ensemble of sub-pattern face images which is resulted from the con-
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fluence of multiple factors related to identity, view, light, and facial expres-
sion, a training tensor D ∈ RIi×Iv×Il×Ie×Ipat×Ipix can be constructed, where
Ii, Iv, Il, Ie, Ipat and Ipix denote the number of identities, views, lights, ex-
pressions, sub-patterns and pixels in a sub-pattern, respectively. HOSVD is
used to factorize identity, view, light, expression information, etc. as

D = Z ×1 Ui ×2 Uv ×3 Ul ×4 Ue ×5 Upat ×6 Upix (6)

where the core tensor Z ∈ RI′i×I′v×I′l×I′e×I′pat×I′pix governs the interaction a-
mong the factors represented in the 6 mode matrices. The mode matrices
Ui ∈ RIi×I′i , Uv ∈ RIv×I′v , Ul ∈ RIl×I′l and Ue ∈ RIe×I′e span the parameter
space of various identities, views, lights, and expressions, respectively. The
mode matrices Upat ∈ RIpat×I′pat and Upix ∈ RIpix×I′pix constitute the space

of sub-pattern eigenimages. The i′-th row of Ui, denoted by u
(i′)
i , is the

coefficient vector of identity i′. The v′-th row of Uv, denoted by u
(v′)
v , is the

coefficient vector of view v′. The l′-th row of Ul, denoted by u
(l′)
l , is the

coefficient vector of light l′. And the e′-th row of Ue, denoted by u
(e′)
e , is the

coefficient vector of expression e′.
The great merit of Sp-Tensor beyond the existing techniques of reorganiz-

ing variables for images is that Sp-Tensor explicitly represents how various
factors interact to produce facial images. Here, the various factors include
identity, view, light and expression. This merit contributes more to the ex-
isting techniques of recognizing variables for images than Tensorface. On
the other hand, comparing with Tensorface, the merit of Sp-Tensor is that
sub-pattern image represents the interaction between mode-5 and mode-6
factors.

From Eq.(6), a training image with the identity i′, the view v′. the light
l′ and the expression e′ is denoted as

D(i′,v′,l′,e′) = Z ×1 u
(i′)
i ×2 u

(v′)
v ×3 u

(l′)
l ×4 u

(e′)
e ×5 Upat ×6 Upix (7)

where D(i′,v′,l′,e′) is a 1× 1× 1× 1× Ipat × Ipix tensor. We reconstruct facial
images by fixing v′, l′, e′, to various i′ and selecting the first 1, 5, 10, 50, 100,
200, 250, 300, 322 eigenvectors from Upix, which are illustrated in Fig. 3.
In the same way, various lights, views and expressions with the increasing
number of eigenvectors are shown in Fig. 4, Fig. 5 and Fig. 6, respectively.
From these four figures, we can see there is very little difference between
images in the first columns of Fig. 3, Fig. 5 and Fig. 6. However, the images
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Figure 3: various people with the increasing number of eigenvectors

in the first columns of Fig. 4 show a great difference between the images due
to various lights. This indicates that the light has the greatest contribution.
Then, we can sort the factors according to their influences in descending
order as such: light, view, identity, and expression.

In order to reduce the effect of light variation, the mean values are sub-
tracted from each of mode-pix fibers of D before decomposing D as Eq.(6).
We called it Spm-Tensor to distinguish it from Sp-Tensor. However, the ter-
m Sp-Tensor is used for both Sp-Tesor and Spm-Tensor if removal of mean
values from each mode-pix fibers is not necessary.

According to Eq.(3), Eq.(6) can be transformed as follows:

D = (Z ×2 Uv ×3 Ul ×4 Ue ×5 Upat ×6 Upix)×1 Ui

= B ×1 Ui

(8)

Every person in the training tensor can be represented by a single I ′i
vector, which contains coefficients with respect to the bases comprising the
tensor B.
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Figure 4: various lights with the increasing number of eigenvectors

Figure 5: various views with the increasing number of eigenvectors
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Figure 6: various expressions with the increasing number of eigenvectors

3.3. Recognition Using Sub-pattern based tensor

First, we will introduce two formal definitions before the discussion of
recognition using Sp-Tensor. As an extension of fibers, we define mode-n
hyperslices in the following way:

Definition 3. The mode-n hyperslices of N -order A ∈ RI1×I2×...×IN are a
set of (N-1 )-order A::...in...:: ∈ RI1×I2×...×In−1×In+1×...×IN obtained from A by
fixing index in and varying other indices, denoted as

S(In)(A) = {A::...1...::,A::...2...::, . . . ,A::...In...::} (9)

The mode-1 hyperslices, mode-2 hyperslices and mode-3 hyperslices of a 3rd-
order tensor X are denoted as Xi::,X:j: and X::k, respectively. See Fig. 7
for more details. The mode-n hyperslices for mode-n product satisfies the
following properties.

Property 1. Given the tensor A,B ∈ RI1×I2×...×In−1×Jn×In+1×...×IN , the ma-
trices U ∈ RJn×In and B = A×n U, one has

B::...in...:: = A::...in...:: ×n U (10)

and
B::...in...:: = A::...in...:: ×n un (11)
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(a) hyperslices Xi:: (b) hyperslices X:j: (c) hyperslices X::k

Figure 7: Hyperslices of a 3rd-order tensor

where

U =


u1

u2

. . .
uJn


Applying hyperslices operator along Iv, Il, Ie on D and B in Eq.(8), respec-
tively, we get

S(Iv)(S(Il)(S(Ie)(D))) = {D:v′l′e′::} (12)

S(Iv)(S(Il)(S(Ie)(B))) = {B:v′l′e′::} (13)

where
v′ = 1, . . . , Iv; l′ = 1, . . . , Il; e′ = 1, . . . , Ie

B:v′l′e′:: ∈ RIi×1×1×1×Ipat×Ipix is the basis tensor for a given view v′, light l′,
and expression e′. According to Eq.(8), we obtain

D:v′l′e′:: = B:v′l′e′:: ×1 Ui (14)

where D:v′l′e′::,B:v′l′e′:: ∈ RIi×1×1×1×Ipat×Ipix , Ui ∈ RIi×I′i . We apply hyper-
slices operator along Ii on D:v′l′e′:: and B:v′l′e′:: in Eq.(14), According to
Eq.(10), we obtain

Di′v′l′e′:: = Bi′v′l′e′:: ×1 u
(i′)
i , i′ = 1, 2, . . . Ii (15)

where Di′v′l′e′::,Bi′v′l′e′:: ∈ R1×1×1×1×Ipat×Ipix , u
(i′)
i ,the coefficient for each per-

son i’, is the i’ th row vector extracted from the matrix Ui. Given a test
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image, a 1 × 1 × 1 × 1 × Ipat × Ipix tensor Dtest can be constructed. The
person’s identity can be determined by the following criterion:

arg
i′,v′,l′,e′

min ∥Dtest −Di′v′l′e′::∥ (16)

In Tensorface[14], the personal identity of a test image is obtained according
to:

arg
i′

min ∥u(i′)
i − ctest∥ (17)

where ctest is the candidate coefficient vector obtained by computing all com-
binations of view, light and expression. Identity is determined by finding the
value of i′ that yields the minimum Euclidean distance between ctest and the

vectors u
(i′)
i . Comparing the above equation with Eq. (16), one can see that

the proposed method uses the Frobenius norm of a tensor rather to measure
the distance between two high order tensors than the norm of a vector to
determine a person’s identity. But in TensorFace, only the distance between
two vectors is used to determine a test personal identity. Obviously, a high
order tensor contains more spatial structure information than a vector. (see
[30][33]). As a result, a portion of the spatial structure information is pre-
served. To show the effects of the spatial structure information preserved
through the proposed method for facial recognition, we extend the existing
MPCA-LV and MPCA-JS[20] to sub-patterns in section 3.4. Experiments
are then conducted to compare Sp-Tensor with the two extended methods as
well as MPCA-LV and MPCA-JS in section 4.5.

3.4. Sp-Tensor-LV and Sp-Tensor-JS

Santu et al.[20] proposed a new optimization framework that unifies some
of the existing tensor-based methods for face recognition into a common
mathematical basis. They regarded tensor face recognition as a multilinear
least square problem and showed four different ways to solve this optimization
problem. We extend two of them to sub-pattern tensor face recognition.

For a test image Dtest, we have,

Dtest = Z ×1 ui ×2 uv ×3 ul ×4 ue ×5 Upat ×6 Upix (18)

where ui, uv, ul and ue are identity-space, view-space, light-space and expression-
space projections,respectively. For a test image Dtest, we need to calculate
ui, uv, ul and ue. This can be formulated as,

arg
ui,uv ,ul,ue

min ∥Dtest −Z ×1 ui ×2 uv ×3 ul ×4 ue ×5 Upat ×6 Upix∥ (19)
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Although we only need to obtain ui, the vectors uv, ul and ue still need to
be calculated. To reduce the computational cost, a fixed set {(uv,ul,ue)}
is restructured, its size is Iv × Il × Ie. Let (u

(v′)
v ,u

(l′)
l ,u

(e′)
e ) ∈ {(uv,ul,ue)},

Eq.(19) can be rewritten as:

arg
ui

min ∥Dtest −Z ×1 ui ×2 u
(v′)
v ×3 u

(l′)
l ×4 u

(e′)
e ×5 Upat ×6 Upix∥ (20)

From Definition 1, the above equation can be rewritten as:

arg
ui

min ∥(Dtest)(i)−ui× (Z ×2 u
(v′)
v ×3 u

(l′)
l ×4 u

(e′)
e ×5Upat×6Upix)(i)∥ (21)

or:

ui = (Dtest)(i) × (Z ×2 u
(v′)
v ×3 u

(l′)
l ×4 u

(e′)
e ×5 Upat ×6 Upix)

+
(i) (22)

where the superscript + implies Moore-Penrose pseudoinverse. For each

possible triple (u
(v′)
v ,u

(l′)
l ,u

(e′)
e ) ∈ {(uv,ul,ue)},

uv′l′e′

i = (Dtest)(i) × (Z ×2 u
(v′)
v ×3 u

(l′)
l ×4 u

(e′)
e ×5 Upat ×6 Upix)

+
(i)

= (Dtest)(i) ×Av′l′e′

v′ = 1, . . . , Iv; l′ = 1, . . . , Il; e′ = 1, . . . , Ie.

(23)

Later, the best matching identity is determined by:

arg
i′,v′,l′,e′

min ∥uv′l′e′

ii′
− u

(i′)
i ∥ (24)

The proposed method, denoted by Sp-Tensor-LV, is an extension fromMPCA-
LV[20]. The difference between them is unfolding Dtest on mode-i in Eq.(21).

Next, we show how to extend MPCA-JS[20] to sub-pattern tensor face
recognition. Let us start from the following definition:

A = Z ×5 Upat ×6 Upix (25)

where A ∈ RI′i×I′v×I′l×I′e×Ipat×Ipix . Then we have:

A(ii, iv, il, ie) = Iiiivilie (26)

where Iiiivilie is a 1 × 1 × 1 × 1 × Ipat × Ipix tensor, ii = 1, . . . , I ′i; iv =
1, . . . , I ′v; il = 1, . . . , I ′l ; ie = 1, . . . , I ′e. According to Eq.(25), Eq.(18) can be
rewritten as:

Dtest = A×1 ui ×2 uv ×3 ul ×4 ue (27)
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The above equation can be rewritten as (See Appendix A):

Dtest = f(ui,uv,ul,ue) ·A (28)

where f : RI′i × RI′v × RI′l × RI′e → RI′iI
′
vI

′
lI

′
e is a function over ui,uv,ul,ue.

Let dtest = f(ui,uv,ul,ue) be the description vector for Dtest, we can then
reformulate Eq.(19) as:

arg
dtest

min ∥(Dtest)(i) − dtest ·A∥ (29)

This is a linear problem and the least square solution for dtest is computed
as:

dtest = (Dtest)(i) ×A+ (30)

where dtest is compared to the stored description vectors and the best match-
ing training image is found. Next, we will show that the description vectors
of training images can be directly calculated from the matrices Ui, Uv, Ul

and Ue.
We define Ci as,

Ci =


C

(1)
i

C
(2)
i

. . .

C
(Ii)
i

 (31)

where

C
(k)
i =


u
(k)
i 0 . . . 0

0 u
(k)
i . . . 0

. . . . . . . . . . . .

0 0 . . . u
(k)
i

 (32)

where u
(k)
i (kth row of Ui) is repeated diagonally for I ′eI

′
lI

′
v times. Similarly

we can define Cv, Cl and Ce. Let M = Ce × Cl × Cv × Ci. If mk is the kth
row of the matrix M, then

mk = (Dtest)(i) ×A+ (33)

the best matching identity is mod(k − 1, Ii) + 1. The detailed proof can be
found in [20]. We call the extended method as Sp-Tensor-JS.
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4. Experiments

4.1. Database and Experimental Settings

Our experimental data came from the Weizmann database1. There were
a total of 2018 facial images from 32 individuals with 26 different views, 16
different light conditions and 3 different expressions in this data set. How-
ever, only 27 out of the 32 individuals had all 3 expressions, the first five
views(0◦,±17◦,±34◦) and the first three light conditions. We evaluated the
performance of the proposed approaches for face recognition based on the
selected 27 subjects. The 27 subjects had 1874 facial images in total which
were resized to 112× 92 without any other preprocessing and were then di-
vided into 16 sub-patterns, whose size was 28 × 23. Within the 1874 facial
images from the 27 selected subjects, 1215 facial images that included all
expressions, the first five poses and the first three light conditions were or-
ganized into a sixth-order tensor D ∈ R27×5×3×3×16×644, where the six modes
were corresponding to identity, view, light, expression, sub-pattern and sub-
pattern pixels, respectively. The remaining images, which had different light
conditions and views from training set D, were regarded as the test set, and
denoted by testmixed. For HOSVD and other tensor operations, we used the
tensor toolbox developed by Bader and Kolda in MATLABTM[34]. The pa-
rameters of HOSVD were set as the following: I ′i = Ii, I

′
v = Iv, I

′
l = Il,

I ′e = Ie, I
′
pat = Ipat and I ′pix = 1

2
Ipix, respectively. All experiments were con-

ducted on a 2.66 GHz Intel PC with 16 GB main memory, and the OS of
Microsoft Windows XP 64-bits version.

We used a 5-fold cross validation method to analyze the performance of
facial recognition for an un-modeled view. In each fold, the ith view’s images
were selected as the testing set from D, the remaining views were used as
the training set. The final result was the sum of the number of correct
recognitions in each fold divided by the sum of the total number of facial
images tested in each fold. Similarly, a 3-fold cross validation method was
used to analyze the performance of facial recognition for an un-modeled light
condition. The same method was used in testing un-modeled expressions as
well. Finally, to analyze the performance of recognizing a facial image for an
un-modeled view under an unmodelled lighting condition, testmixed was used
as the test set and D was used as the training set.

1http://www.faculty.idc.ac.il/moses/
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4.2. time complexities of Sp-Tensor and TensorFace

In this section, the time complexities of Sp-Tensor and TensorFace are
analyzed and compared. From HOSVD, the matrix Un is the left matrix of
SVD performing on the unfolding matrix D(n). One is required to solve an
eigenvalue problem of the matrix D(n)D

′
(n) with the size of In × In. Its time

complexity is O(I3n)[35]. For Sp-Tensor, D is decomposed as

D = Z ×1 Ui ×2 Uv ×3 Ul ×4 Ue ×5 Upat ×6 Upix (34)

Usually, the number of pixels in each sub-pattern is much larger than the
number of other factors in the training tensor. So, the time complexity of
the decomposition of the training tensor D is about O(I3pix). For TensorFace,
similarly, D′ is decomposed as

D′ = Z ′ ×1 U
′
i ×2 U

′
v ×3 U

′
l ×4 U

′
e ×5 U

′
pix (35)

Its time complexity is roughly O(I ′3pix). In our experiments, the facial image
had 112 × 92 = 10304 pixels and I ′pix was 10304 in the training tensor of
TensorFace. In Sp-Tensor, all images were divided into 16 sub-patterns, each
of which contained 644 pixels, and Ipix was 644 in the training tensor. So,
when building a model, Sp-Tensor cost less time than TensorFace. Table
1 listed the time cost for building models using various numbers of sub-
patterns. When the number of sub-patterns was 1, Sp-Tensor degenerated
into TensorFace.

Table 1: The consume times for building model on various number of sub-patterns

the number of sub-patterns 64 32 16 8 4 2 1 (TensorFace)
Ipix 161 322 644 1288 2576 5152 10304

cost time (second) 2.08 2.11 2.81 9.15 71.29 355.36 21419

4.3. Comparing Sp-Tensor with Sp-PCA1 and TensorFace

In the following experiments, the proposed methods Sp-Tensor and Spm-
Tensor2 were tested and compared with Tensorface[14] and Sp-PCA1[36].

2Spm-Tensor denotes that the mean values were subtracted from each of mode-pix
fibers of D before decomposing D as Eq.(6).
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As shown in Table 2, out of the four different experiments, Sp-Tensor
had the highest recognition accuracy for un-modeled expression and testmixed

with a recognition rate of 92.34% and 72.99% respectively. Whereas, Spm-
Tensor achieved the highest recognition accuracy of 99.56% in un-modeled
cases, exceeding Sp-Tensor and Tensorface (methods that did not remove
light variations) by 28%. The reason is that Spm-Tensor reduces the effects
of light variation by removing the mean values of each mode-pix fibers of
D in un-modeled light images. The advantage of this effect was further
demonstrated when compared to Sp-PCA1 which also reduces the influence of
light variations, yet the proposed method of Spm-Tensor surpassed Sp-PCA1
in recognition accuracy by 1.82%. The images from Fig. 8 were examples
of original images of one subject from the Weizmann database which had
the first view and various expressions and under different light conditions.
The corresponding darker images beside the original images were the facial
images whose mean values had been removed to eliminate the influence of
shadows.

Table 2: Experimental results using Weizmann database on 28× 23 size sub-patterns

Sp-Tensor Spm-Tensor Tensorface Sp-PCA1
view 87.82 85.60 79.59 88.91
light 72.66 99.56 71.28 98.02

expression 99.34 98.27 98.93 98.85
testmixed 72.99 67.86 70.86 71.17

For different views, in each fold, the vth view’s images (243 images) were
selected as the test set fromD, the remaining images were used as the training
set. Table 3 showed the number of images that were recognized correctly in
each fold. We can see that Sp-tensor reached the top in view5 and Spm-
tensor reached the top in view1 and view3. Ideally, to view1 and view5
the results should be symmetrical because both views share the same degree
of change. However the experiment results disagreed with this hypothesis
because whole head images were used instead of cropped and aligned facial
images. As a result, certain details in the whole head images were not aligned
symmetrically for both view1 and view5 (i.e. the position of certain facial
features such as the ear might be on a certain pixel in view1 but not in the
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Figure 8: Original images of the 1st subject in the 1st view in Weizmann database under
different light conditions with various expressions. The responding images are images
whose mean values have been removed.
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corresponding pixel in view5).

Table 3: The number of correct recognition in each fold for different views

Sp-Tensor Spm-Tensor Sp-PCA1
view1(+34◦) 228 230 217
view2(+17◦) 207 203 218
view3(0◦) 215 220 217

view4(−17◦) 196 207 217
view5(−34◦) 221 180 212

As we can see, Sp-Tensor showed high recognition accuracies when testing
a facial image with unmodelled expressions as shown in Table 2. That is be-
cause the facial images of the same user with different expressions only show
changes in certain sub-patterns, whilst information in other sub-patterns re-
mains invariant. This indicates that Sp-Tensor method can preserve some
local information for facial images such that the recognition accuracy is im-
proved.

4.4. the relation between performance and the number of sub-patterns

The number of sub-patterns is a tradeoff between the accuracy and stabil-
ity of the estimation of covariance in the existing techniques of re-organizing
variables for images[29]. In this section, the relationship between perfor-
mance and the number of sub-patterns is investigated. We divided the facial
images into 4 (56×46), 32 (14×23) and 64 (7×23) sub-patterns, respective-
ly. Table 4 showed no difference between the performance of Sp-Tensor using
32 (14 × 23) and 64 (7 × 23) sub-patterns. For Spm-Tensor and Sp-PCA1,
the performances were worse as the number of sub-patterns increased. Fig. 9
showed the changes of recognition accuracies with the number of the sub-
patterns when testing on un-modeled view, light, expression and testmixed.
As we can see from Fig. 9, the number of sub-patterns had less influence on
the performance of Sp-Tensor than the other techniques. Overall, Sp-PCA1
achieved the best performance when using 16 sub-patterns. For testing fa-
cial images under an un-modeled light condition, Spm-Tensor showed better
recognition accuracy than Sp-Tensor and Sp-PCA1. With the same num-
ber of sub-patterns, Sp-Tensor’s performance surpassed other methods when
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testing on un-modeled expression and testmixed, while Spm-Tensor achieves
the best recognition accuracy when testing on facial images under an un-
modeled light condition. However, tests on images with an un-modeled view
revealed that different methods yielded the best results using different size
sub-patterns.

Table 4: Experimental results using Weizmann database on 56× 46 size, 14× 23 size and
7× 23 size sub-patterns

Sp-Tensor Spm-Tensor Sp-PCA1

56× 46

view 87.82 89.79 52.84
light 72.43 91.60 77.45

expression 99.34 99.18 86.17
testmixed 73.29 72.69 65.10

14× 23

view 87.82 77.12 83.05
light 72.26 99.75 97.86

expression 99.34 97.45 98.60
testmixed 73.14 66.01 70.56

7× 23

view 87.82 59.75 73.17
light 72.26 99.18 97.53

expression 99.34 97.04 98.02
testmixed 73.14 64.34 68.74

4.5. Analysis of recognition methods Sp-Tensor-LV and Sp-Tensor-JS to Sp-
Tensor

Looking deeper into Sp-Tensor’s extended method, we carried out an ex-
periment using 28 × 23 size sub-patterns to compare Sp-Tensor with Sp-
Tensor-LV and Sp-Tensor-JS. For Sp-Tensor-LV, an extended method of
MPCA-LV, we used the maximum cosine distance between uv′l′e′

ii′
and ui′

i

instead of the minimum norm in Eq.(24). Comparing and analyzing the
performances of both maximum cosine distance and minimum norm of Sp-
Tensor-LV revealed that experiments conducted on images from un-modeled
views, expressions and testmixed, using norm as measure outperformed the
ones using cosine distance as measure. But for experiments on images with
un-modeled lights, the performance of using norm as measure was a bit worse

21



4 16 32 64
50

55

60

65

70

75

80

85

90

95

100

the number of sub−patterns

R
ec

og
ni

tio
n 

ra
te

 

 
Sp−Tensor
Spm−Tensor
Sp−PCA1

(a) On view

4 16 32 64
50

55

60

65

70

75

80

85

90

95

100

the number of sub−patterns

R
ec

og
ni

tio
n 

ra
te

 

 

Sp−Tensor
Spm−Tensor
Sp−PCA1

(b) On light

4 16 32 64
50

55

60

65

70

75

80

85

90

95

100

the number of sub−patterns

R
ec

og
ni

tio
n 

ra
te

 

 

Sp−Tensor
Spm−Tensor
Sp−PCA1

(c) On expression

4 16 32 64
50

55

60

65

70

75

80

85

90

95

100

the number of sub−patterns

R
ec

og
ni

tio
n 

ra
te

 

 
Sp−Tensor
Spm−Tensor
Sp−PCA1

(d) On testmixed

Figure 9: Recognition rates vs. the number of sub-patterns
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than those of using cosine distance as a measure. The results of our experi-
ments were listed and organized in Table 5.

To further analyze and compare the difference between the methods, ex-
periments were conducted using Sp-Tensor-JS, an extended method from
MPCA-JS. Through the results shown in Table 5, one can notice that the
recognition accuracy of Sp-Tensor-LV (79.51%) was dramatically higher than
that of Sp-Tensor-JS (17.94%) when testing on un-modeled view. Addition-
al experiments on images from un-modeled expressions and testmixed, also
showed that Sp-Tensor-LV has higher recognition accuracy than those of Sp-
Tensor-JS. This proves that Sp-Tensor-LV had more robust than Sp-Tensor-
JS when testing a facial image that combines unknown light condition and
unknown view in the model.

To fully compare different methods, we then removed the mean values and
obtained the following extended methods, Spm-Tensor-JS and Spm-Tensor-
LV. Reducing the effects of light variation improved both extended recogni-
tion methods performances on un-modeled light. Comparing the results of
the extended methods to the results of Spm-Tensor in Table 2, Spm-Tensor
still surpassed other methods for recognition. However it is worth noting
that Spm-Tensor-JS, though a bit lower in recognition accuracy compared
to Spm-Tensor, was faster than Spm-Tensor. To obtain a better overview of
all methods, we also implemented MPCA-LV and MPCA-JS methods on the
Weizmann database, their results were listed in Table 6.

In conclusion from Tables 2, 5 and 6, The proposed method Sp-Tensor
showed higher recognition accuracy than MPCA-LV and MPCA-JS as well
as their corresponding extended methods, Sp-Tensor-LV and Sp-Tensor-JS.
Even when effects of light variations were reduced, experiments illustrated
that our method, Spm-Tensor, surpassed other recognition methods in terms
of recognition accuracy, while being slightly slower than Spm-Tensor-JS.

Table 5: Experimental results of two extended methods

Sp-Tensor-LV Spm-Tensor-LV Sp-Tensor-JS Spm-Tensor-JS
cos norm cos norm

view 75.06 79.51 77.61 78.68 17.94 17.28
light 80.16 70.78 99.01 98.44 99.42 99.51

expression 98.44 98.93 98.11 98.35 90.37 89.79
testmixed 68.44 70.86 70.71 71.02 53.87 55.24
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Table 6: Experimental results of MPCA-LV and MPCA-JS

MPCA-LV MPCA-JS
cos norm

view 75.23 79.59 20.25
illumination 80.25 71.28 99.51
expression 98.44 98.93 91.03
testmixed 68.59 70.86 57.36

5. Conclusion

Facial images change appearance due to multiple factors such as different
poses, lighting variations, and facial expressions. Tensors are higher order ex-
tensions of vectors and matrices, which make it possible to analyze different
appearance factors of facial variation. However, the existing methods using
tensor rasterize facial images as vectors, which lead to a loss of spatial struc-
ture information for facial images. In order to solve this problem, we extend
current tensor-based facial recognition method to the sub-pattern mode. The
advantages of this method are:(1) Not only the spatial structure information
and local information of facial images are preserved during model-building,
but spatial structure information is also preserved during recognition; (2) Sp-
Tensor is less expensive than the existing methods when building a model.
We also extended two existing Tensorface recognition methods to sub-pattern
mode. In order to compare the performances of Sp-Tensor, Sp-PCA1, origi-
nal TensorFace and two extended recognition methods, the experiments were
conducted on the Weizmann face database using different size sub-patterns.
The experimental results prove that the Sp-Tensor not only works better
than the original TensorFace, but outperforms Sp-PCA1 when testing facial
images under an unknown light condition or with an unknown expression or
under the combination of unknown view and unknown light condition in the
model. The performance of Sp-Tensor is stable for varying size of sub-pattern
for testing of images from an un-modeled view.

Our future research will focus on the matrix formed sub-pattern images
instead of vector formed ones to explore the advantages of spatial structure
information of sub-pattern images. Meanwhile, it would be meaningful to
explore how sub-pattern tensor face methods can be used for face recognition
under occlusion.
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Appendix A. Deduction of Sp-Tensor-JS

After applying the rule of mode multiplication, the Eq. (27) can be
written as,

Dtest =

I′e∑
ie=1

ue(ie) ·
I′l∑

il=1

ul(il) ·
I′v∑

iv=1

uv(iv) ·
I′i∑

ii=1

ui(ii) · (Iiiivilie)(i)

=

I′e∑
ie=1

ue(ie) ·
I′l∑

il=1

ul(il) ·
I′v∑

iv=1

uv(iv) · ui ·

 (I1ivilie)(i)
. . .

(II′iivilie)(i)


=

I′e∑
ie=1

ue(ie) ·
I′l∑

il=1

ul(il) ·
{
uv(1) · ui ·

 (I11ilie)(i)
. . .

(II′i1ilie)(i)

+ · · ·+ uv(I
′
v) · ui ·

 (I1I′vilie)(i)
. . .

(II′iI′vilie)(i)

}

=

I′e∑
ie=1

ue(ie) ·
I′l∑

il=1

ul(il) · uv ·


ui ·

 (I11ilie)(i)
. . .

(II′i1ilie)(i)

 . . . 0

. . . . . . . . .

0 . . . ui ·

 (I1I′vilie)(i)
. . .

(II′iI′vilie)(i)





=

I′e∑
ie=1

ue(ie) ·
I′l∑

il=1

ul(il) · uv ·

 ui . . . 0
. . . . . . . . .
0 . . . ui


(I′v×I′iI

′
v)

·



 (I11ilie)(i)
. . .

(II′i1ilie)(i)


. . .
. . . (I1I′vilie)(i)
. . .

(II′iI′vilie)(i)




(A.1)
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we denote

 ui . . . 0
. . . . . . . . .
0 . . . ui


(I′v×I′iI

′
v)

·



 (I11ilie)(i)
. . .

(II′i1ilie)(i)


. . .
. . . (I1I′vilie)(i)
. . .

(II′iI′vilie)(i)




= Yil (A.2)

Eq.(A.1) can be written as,

Dtest =

I′e∑
ie=1

ue(ie) ·
I′l∑

il=1

ul(il) · uv · Yil

=

I′e∑
ie=1

ue(ie) · ul ·

uv · Yil=1 . . . 0
. . . . . . . . .
0 . . . uv · Yil=I′l


=

I′e∑
ie=1

ue(ie) · ul ·

uv . . . 0
. . . . . . . . .
0 . . . uv


(I′l×I′vI

′
l)

·

Yil=1

. . .
Yil=I′l


(A.3)

Simlilarly, we denote uv . . . 0
. . . . . . . . .
0 . . . uv


(I′l×I′vI

′
l)

·

Yil=1

. . .
Yil=I′l

 = Zie (A.4)

Eq.(A.3) can be written as,

Dtest =

I′e∑
ie=1

ue(ie) · ul · Zie

= ue ·

ul · Zie=1 . . . 0
. . . . . . . . .
0 . . . ul · Zie=I′e


= ue ·

 ul . . . 0
. . . . . . . . .
0 . . . ul


(I′e×I′lI

′
e)

·

Zie=1

. . .
Zie=I′e


(A.5)
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Substituting Zie and Yil with their definition and after a few more steps, we
get,

Dtest = ue ·

 ul . . . 0
. . . . . . . . .
0 . . . ul


(I′e×I′lI

′
e)

·


uv . . . . . . 0
. . . uv . . . . . .
. . . . . . . . . . . .
0 . . . . . . uv


(I′lI

′
e×I′lI

′
eI

′
v)

·


ui . . . . . . . . . 0
. . . ui . . . . . . . . .
. . . . . . ui . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . . . . ui


(I′lI

′
eI

′
v×I′lI

′
eI

′
vI

′
i)

·



(I1111)(i)
. . .

(II′i111)(i)
(I1211)(i)

. . .
(II′iI′v11)(i)
(I1121)(i)

. . .
(II′iI′vI′l1)(i)
(I1112)(i)

. . .
(II′iI′vI′lI′e)(i)


(I′lI

′
eI

′
vI

′
i×IpatIpixel)

⇒ Dtest = f(ui,uv,ul,ue) ·A

(A.6)

where f : RI′i × RI′v × RI′l × RI′e → RI′iI
′
vI

′
lI

′
e is a function over ui,uv,ul,ue.

Let dtest = f(ui,uv,ul,ue) be the description vector for Dtest.
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