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Abstract

Canonical correlations analysis (CCA) is often used for feature extraction and
dimensionality reduction. However, the image vectorization in CCA breaks
the spatial structure of the original image, and the excessive dimension of
vector often brings the curse of dimensionality problem. In this paper, we
propose a novel feature extraction method based on CCA in multi-linear dis-
criminant subspace by encoding an action sample as a high-order tensor. An
optimization approach is presented to iteratively learn the discriminant sub-
space by unfolding the tensor along different tensor modes. It retains most
of the underlying data structure including the spatio-temporal information,
and alleviates the curse of dimensionality problem. At the same time, an
incremental scheme is developed for multi-linear subspace online learning,
which can improve the discriminative capability efficiently and effectively.
The nearest neighbor classifier (NNC) is exploited for action classification.
Experiments on Weizmann database showed that the proposed method out-
performs the state-of-the-art methods in terms of accuracy. The proposed
method has low time complexity and is robust against partial occlusion.
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1. Introduction

Nowadays, many feature extraction methods have been used in recogni-
tion related task, such as action recognition [1] [2] [3] and face recognition
[4] [5]. Most traditional algorithms, such as principal component analysis
(PCA) [6] [7] and linear discriminant analysis (LDA) [8] [9], represent an
object as a 1-dimension vector. Canonical correlations analysis (CCA) [10]
[11], which reflects the degree of similarity of two image sets in orthogonal
subspaces, has received more increasing attention for recognition recently.
Kim et al. [12] proposed an optimal discriminant function of canonical cor-
relations (DCC) to transform image sets, so that the similarity of intra-class
sets is maximized while the similarity of inter-class sets is minimized. Wu
et al. [13] proposed an incremental learning scheme to update the discrim-
inant matrix for the analysis of canonical correlations (IDCC), which does
not require a complete re-training when training samples are available in-
crementally, resulting in reduced computational cost. However, the image
vectorization of these methods has broken the original spatial structure and
often leads to the curse of dimensionality problem.

For the sake of overcoming this limitation, a number of multi-linear sub-
space analysis (MSA) methods [14] [15] [16] have been suggested for recog-
nition. The discriminant analysis with tensor representation (DATER) pro-
posed in [17] captures most of the discriminatory information by maximizing
a tensor-based scatter ratio criterion. The incremental tensor biased discrim-
inant analysis (ITBDA) [18] is suitable for distinguishing and tracking the
objects by online learning the tensor biased discriminant subspace. How-
ever, most of the MSA methods work directly on a single sample, without
considering the canonical correlations between different samples.

In this paper, we propose a novel CCA-based feature extraction method,
called multi-linear discriminant analysis of canonical correlations (MDCC),
to iteratively learn the multi-linear discriminant subspace using canonical
correlations between different samples. We develop an online learning scheme
for the MDCC named as incremental multi-linear discriminant-analysis of
canonical correlations (IMDCC). The added samples incrementally update
the discriminant information, which can maximize the canonical correlations
of the intra-class samples while minimizing the canonical correlations of the
inter-class samples. We summarize the advantages of our algorithm IMDCC
as follows.

1. IMDCC operates on each mode of the training tensors separately to



alleviate the curse of dimensionality problem.

2. The optimization algorithm IMDCC converges as discussed illustra-
tively in this paper.

3. IMDCC shows the high computational efficiency of tensor subspace
learning.

The rest of the paper is organized as follows. In Section 2, we introduce
the tensor algebra and DCC algorithm. In Section 3, we present the MDCC
and IMDCC algorithms and discuss the convergence performance of IMDCC.
In Section 4, we compare the experimental results and the computational cost
with other methods. Conclusions are drawn in Section 5.

2. Related works

2.1. Multi-linear algebra

A tensor is a multi-dimensional array. In this paper, scalers are denoted
by lowercase letters, e.g., a. Vectors (1-order tensor) are denoted by bold
lowercase letters, e.g., a. Matrices (2-order tensor) are denoted by bold up-
percase letters, e.g., A. Higher-order tensors (3-order or higher) are denoted
by calligraphic uppercase letters, e.g., A.

An N-order tensor is represented as A € RIV¥2XxInxeXIN wwhere I, is
the dimensions of mode-n, (1 < n < N). An element of A is denoted as
Airigoinin, (1 < i < I,). The mode-n vectors of A are the vectors in R
while keeping the vectors of other modes fixed. For example, a matrix is
taken as a 2-order tensor, the column vectors in the matrix are the mode-1
vectors and the row vectors in the matrix are the mode-2 vectors.

Slices of A are two-dimensional sections of a tensor. The left-hand side of
Figure 1 shows the frontal, lateral, and horizontal slices of a 3-order tensor
A, respectively.

Definition 1. (Mode unfolding). The mode-n unfolded matrix of A, de-
noted by A,y € Rf»*(nfzInalnti--In) ig obtained by spreading the slices side
by side along a given direction. The column vectors of A,y are the mode-n
vectors of A while keeping the vectors of other modes fixed.

Taking a $-order tensor A for example, the mode-n unfolded matrix
A)(1 < n < 3) is shown in Figure 1.
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Figure 1: Illustration of mode-n unfolded matrix. Unfolding the tensor A € RI1>*/2x1s

to the matrix Ay € Rt x(213)  the matrix A € RE2x(113) - and the matrix Ay €
RIsx(Ii12) respectively.



Definition 2. (Mode product). The mode-n product of a tensor A €
RIxI2x-xIN and a matrix U, € RFn(J, < I,)isan I} X ... x [,_; X
Jp X I,11 X ... Iy tensor defined by

(‘A Xn Uz;)il-nin—ljninﬂniz\r = Zai1i2~~~iNanin7 (1)

in

where X, denotes the mode-n product, UZ is the transposed matrix of U,
and U;,;, is an element of UL. The mode-n product Y = A x,, UL can be
expressed in terms of unfolded tensor Y,y = UL A ).

Given two matrices U € RI»*/n 'V € RIn*/m the mode products can be
represented as

Ax, Ul x,, VI = (A%, UN) %, VI = (Ax,, VI) x, UL, (m #n), (2)

which indicates that the order of the products is irrelevant for distinct modes
in a series of products. If the modes are the same, then A x,, U x, VI =

A x, (VIUT).

Given an N-order tensor A € RI*2X-XIN_the corresponding mode-
n unfolded matrix is denoted as A, € RI*Ut-In-tltiIn)  The tensor
decomposition of A aims to seek for N orthonormal basis matrices U,, €
RI»*In(J, < I,,1 < n < N), which are obtained by high-order SVD (HOSVD)
in Algorithm 1. HOSVD is a convincing generalization of the matrix SVD,
and performs on higher-order tensor A to compute the left singular matrix
of Ay (1 <n < N). Then the mode-n left singular matrix can be used as
orthonormal basis matrix of A, for decomposition.

Algorithm 1 HOSVD of tensor A.
INPUT: A.
for n=1to N do
Do SVD on A(n).
U,, < the left singular matrix of A,.
end for

C=Ax, Ul x, UL .. xyUL. (3)
OUTPUT: C, U}, U,,..., Uy




In Eq. (3), C € R/1*/2X-XIN ig the core tensor, which governs the rela-
tionship among U, (1 < n < N). The matrix representation of this decom-
position can be obtained by

Ciy=UlA(Upp1 @ U, ®...0 Uy U ®...0 U, ), (4)

where ® denotes the Kronecker product, C,) € R/»*(J1/2--Jn-1ns1--Jv) ig the
mode-n unfolded matrices of C.

Definition 3. (Tensor norm). The norm of a tensor A € RI1*2x-xIn g
the square root of the sum of the squares of all its elements, represented by

Al = VA = 334 o)

which is analogous to the matrix Frobenius norm [19].

Definition 4. (Scalar product). The scalar product of two tensors A, B €
RIxI2xxIN i the sum of the products of their entries, represented by

(A, B)y= Z Z . Z Aivig...inBivig...in s (6)

i1 iz in
when A = B, it follows that (A, A)=||.A|*.
More definitions of tensor can be found in [19].

2.2. Discriminant analysis of canonical correlations (DCC)

An action sample includes N frames. Fach frame is vectorized to be a
D-dimensional vector. These frames can be represented as a matrix in space
RP*N “where each column vector is a vectorized frame. The matrix is called
an image set. The purpose of the DCC [12] is to find the discriminative trans-
formation matrix using canonical correlations for image sets classification.
Assume m image sets coming from C classes: {X],..., X}, ,X3,..., X2 ..., X{, ... X 1,
where X¢ € RP*Y means the i-th image set in the c-th class, m, is the num-
ber of image sets in the c-th class, and m; +mo + ...+ m¢e = m is satisfied.
First of all, a d-dimensional subspace of X¢ is represented by an or-
thonormal basis matrix P§ € RP*4 s.t. X¢X¢T = PSASPST, where A¢, P§

are the matrices of eigenvalues and eigenvectors of the d largest eigenvalues,
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respectively. Given an initialized identity matrix T € RP*P TTP¢ is or-
thonormalized to TTPE/ by QR-decomposition, the details are discussed in
[12]. For every pair of P§ and P? (1 < ¢,r < C), let the SVD of P{"TTP?
be

Pf,TTTTP;, = QijAQjZ-T, s.t. N =diag(pr,...,pn), (7)

where Q;;, Q;i are the rotation matrices; pi, ..., p, are the canonical corre-
lations.
The similarity of two image sets is defined as the sum of canonical corre-
lations:
Tpr TpcT
Fij = max tT‘{T Pj jSQij Pz T}, (8)
Qi Qi
where T is obtained to maximize the similarities of intra-class sets and min-
imize the similarities of inter-class sets, which is obtained by

er‘il ZkEWi FZk
z?; ZleBi Fi 7

where W; = {k|Cy = C;} and B; = {j|C; # C;} denote the intra-class image
sets and inter-class image sets, respectively. Cj, C; are the class label of X},
and X, respectively. C; is the class label of a given X;. The discriminant
transformation matrix T is rewritten as

tT(TTSbT)

T = arg max
T

9)

T = arg mrfa‘xm, (10)
where .
Sp= Z Z<P§/ Q;i — P{Qi)(P} Qi — PrQy)" (11)
1=1 c#r
is the inter-class scatter matrix, (1 < ¢,r < C),
Su=> Y (PFQ; —P{Qy)(PI'Q;i — PrQy)” (12)

i=1 c=h

is the intra-class scatter matrix, (1 < ¢,h < C). Then T can be updated by
the eigen-decomposition of (S,,)™'Sy. The details are discussed in [12].



3. Incremental multi-linear discriminant analysis of canonical cor-
relations

An action sample is naturally represented by an N-order tensor. The
purpose of IMDCC method is to define the discriminant transformation ma-
trix (DTM) T,, € RF»*/ (J, < I,,1 < n < N) which maps the original
multi-linear space RI1*2XxIn o RAX2XXIN ysing canonical correlations

of incremental tensors. Assuming that m tensor samples come from C' class-
est {Af,... AL AL AZ AT AS Y where A € RIVT2xIN

m1) ma’
is the i-th N-order tensor in the c-th class, m. is the number of tensors in the
c-th class, and mq +mqo +...+m¢c = m is satisfied. We seek N discriminant

transformation matrices T, € R»*/»(1 < n < N) for projection
Df =A< TT %o Th ... xyTh, 1<i<m, 1<c<C, (13)

where D¢ € R/1*+*/~ ig the dimensional reduced tensor belongs to c-th class,
which is used for classification by NNC method.

The discriminant function J(T),,) is defined as the ratio of the similarities
of any pairs of intra-class samples and the similarities of pairwise inter-class
samples. According to Egs. (8) ~ (10), J(T,,) is defined by

def tr (TZS,E”) Tn)

J(T,) . 1<n<N, 14)
( tr(TTSTT,,) (
where T, is defined by
tr(TTS™T,
T, = argmaxJ(T,) = arg maxr(”—l(’)), 1<n<N, (15)
T Tn tr(TLS, ' T,)

which is found to maximize the discriminant function J(T,,); Sén) is the mode-

n inter-class scatter matrix; Sgl ) is the mode-n intra-class scatter matrix.
T, (1 <n < N) ensures that the transformed tensors from the same class are
distributed as close as possible, while the transformed tensors from different
classes are distributed as far away as possible. The process of calculating T,
is represented as follows:

3.1. Multi-linear discriminant analysis of canonical correlations (MDCC)
First of all, the N-order tensor A{ is transformed by

AS e AS < T o X Th g X TH oo xv TR (16)
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where < is the assignment operation. The updated A¢ € R %X Jn—1xInXJnp1x...x Iy

is mode-n unfolded to be a matrix A, € RInx(12edntJnt1JN) - wwhich is

used for mode-n transformation by T,, € R»*/»_ Since T,, depends on the

discriminant transformation matrices of the other (N — 1) modes, it is hard-
ly to find a closed form for T,,(1 < n < N). Thus it requires repeating the
procedure for a certain number of iterations. The iterative optimization of
T,, is described as follows:

After dimensional reduction of AS in Eq. (16), eigen-decomposition is
performed on AZ(n Af s.t.

(n) >

T

2 ) 1 Y
where the vectors of Pf(n) € RI»*Jn are the eigenvectors of the .J, largest

eigenvalues; Pf(”) is the mode-n linear subspace of Af, . Given an identity

matrix T,, € R»>* for initialization, QR-decomposition of TZPf(n) is per-

formed s.t. Tng(") = A where 9™ € RI**7» is the orthonormal

K3 3
matrix and AC ") ¢ RI*Jn is the invertible upper-triangular matrix. Thus

e TT(PC(”)(AE("))_l). Assume P¢™ = PX(AS)1 g0 TTPEM g
an orthonormal matrix For every pair of P¢, P;l (1 < ¢,r <), let the
HOSVD of P T TTP ™ pe

PY™ T, TP — I AMQY” (18)
where A is a singular matrix and Q” , Qg?) € R7"*/» are orthogonal

rotation matrices. Then the mode-n inter-class scatter matrix SI()”) and intra-
class scatter matrix S{” can be calculated according to

b _ZZ T ")Q : n)Qn )(P T(”)Q(n) ? n)Qg-l))T, (19)
i=1 c#r

=3 SR - B (PYIQ - PG (20
i=1 c=h

Wh(eﬁ“e 1< )c r,h < C, T, € RI»*/n are updated by eigen-decomposition of
(Su) 18y,



3.2. Incremental multi-linear discriminant analysis of canonical correlations
(IMDCC)

Assuming A$ (1 < ¢ < C) is a new added tensor to the training set,
P;ﬁ)l is the mode-n matrix of eigenvectors, ijj)m is the rotation matrix
between A¢, ., and A} (1 <i <m,1 < r < C), the incremental mode-n inter-
class scatter matrix and intra-class scatter matrix are calculated according
to

m

asy =3P~ PO Pl — UYL
i=1
cET
(21)
n c(n n h(n n c(n n h(n n
Asl(l)) - Z(Pm(-i-%an—)i-l,i_Pi( )Qz(,n)l—l-l)(Pm(-i-ngn-)i-l,i_Pi( )QZ('m)”Hrl)T’ (22)
i=1
c=h

where 1 < h < C, the updated mode-n inter-class scatter matrix and intra-
class scatter matrix are calculated by

s, = s{™ + As{™, (23)
SM =8m L AS(M, (24)

T, is updated by eigen-decomposition of (S,/”)1S,"™. All the N T, are
initialized as an identity matrix, and are updated to realize optimization
through an iterative learning with the incremental training samples. The
computational procedure of T,, is represented by Egs. (16) ~ (24). The
proposed method is summarized in Algorithm 2.

3.3. Discussion about convergence

The alternating optimization approach by iterative learning for T,, con-
verges when the termination condition is satisfied as

N
Error(k) = Z [|T® TED| — [|| < e, subject to T, T =1, (25)
n=1

where Error(k) and Error(k—1) are the resulted error values from the k-th
and (k-1)-th iteration, respectively. I is the identity matrix; € is a pre-defined
small threshold whose value is 0.1.
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The convergence property of IMDCC in training procedure is shown in
Fig. 2. In Fig. 2(a), the x-coordinate is the number of the training iterations
k and the y-coordinate is the error value Error(k) between two neighboring
training iterations, i.e., the Error(k) demonstrates how S>> || ]T%k)TT%kfl) |—
I|| changes in the training iterations with all mode features. From the sub-
figure, we can see that as the number of training iterations increases, the
change of Error(k) approaches to zero, which means the algorithm converges.
In Fig. 2(b), the x-coordinate denotes the number of the training iterations
and the y-coordinate is the discriminant function value (DFV) calculated by
T, in Eq. (14), i.e., how the DFV in each mode changes is shown in the
training iterations. From the sub-figure, we can see that as the number of
training iterations increases, the change of DFV in each mode approaches to
zero. Since the DFV achieves its maximum and keeps stable, the optimal T,
can be obtained, as defined in Eq. (15). Both of the sub-figures demonstrate
that the training procedure of IMDCC converges within 10 iterations.

Algorithm 2 IMDCC
INPUT: m labeled N-order original tensor samples I',, =

{AL AL AT AS H(ma+. .+ me = m), L labeled incremen-
tal tensor samples I'y = {B},.... B} ,...,Bf,....BL i+ ...+ lc = L),
class  label {1,...,C}, discriminant  transformation  matrices

T,,(1<n<N).
OUTPUT: Updated T,,,(1 <n < N).
Algorithm:
for [ =1to L do
Initialize VA, € I',,, | {Bf € '}, 1 < e,r < C.
repeat
for n=1to N do
Update Bf by Eq. (16), and calculate Plcl(n), Ql(zn)(l <i<m+l)
by Egs. (17) ~ (18).
Calculate S, 8™ by Eqs. (19) ~ (24), and update T, by ecigen-
decomposition of (S;,S”))*ls;f”).
end for
Calculate Error(k) by Eq. (25).
until Error(k) = SN T TE Y — 1) < e
end for

11



Aggregation of Errars

5 1 1 1 1 1
0 2 4 5 8 10 12 14 16 18

lteration Mumber

(a)

iy
[S]

—
—
T

1

iy
[
T
1

Dizcriminant Function Yalue (DFY)

5 1 1 1 1 1
a 2 4 a] g 10 12 14 16 16

lteration Mumber

(b)

Figure 2: Ilustration of properties of IMDCC on the Weizmann database. (a) the aggre-
gation of errors as the convergence check criterion Error(k), (b) the discriminant function
value (DFV) in multi-linear subspace.
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4. Experiment results

4.1. Actions from Weizmann database

The experiment was implemented on the Weizmann database, which is
a commonly used database for human action recognition. There are 90 low-
resolution (180x 144, 25fps) videos which contain 10 action categories in the
database.

We extracted 3500 samples from the 90 videos, where each sample consists
of 20 successive frames and begins every other frame. We used 3000 samples
for training and the remaining 500 samples for testing. Both the training set
and testing set contain all the ten categories of actions. The training set was
further partitioned into an initial set which was used for learning the initial
discriminative model and the remaining samples were added consequently
for re-training.

In order to represent the spatio-temporal feature of the samples, 20 suc-
cessive frames of each action were taken to utilize the temporal feature. Each
centered frame was normalized to the size of 64 x 48 pixels. Thus the tensor
sample was represented in size of 64 x 48 x 20 pixels. Fig. 3 shows a tensor
sample of the bending action.

4.2. Comparative methods and parameter setting

In this section, we compare the performance of IMDCC/MDCC with oth-
er classical algorithms. These algorithms are discriminant analysis of canon-
ical correlations (DCC) [12], incremental discriminant analysis of canonical
correlations (IDCC) [13], and discriminant analysis with tensor representa-
tion (DATER) [17]. The DCC is a discriminative learning method for sets
classification. The discriminant function is expected to maximize the canon-
ical correlations of intra-class sets and minimize the canonical correlations
of inter-class sets. The IDCC integrates incremental learning with the DCC
framework, it performs the training process using increasing samples instead
of using total training samples at one time. The DATER performed discrimi-
nant analysis to realize dimensionality reduction directly on tensors, without
considering the canonical correlations between different tensors. The MDCC
adapts DCC for tensor. The discriminant analysis using canonical correla-
tions is performed in multi-linear subspace, and the discriminant transforma-
tion matrices are learnt by an iterative optimization approach. The IMDCC

13



mode-1 (column)
\
\
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Figure 3: Example of the bending action in spatio-temporal domain from Weizmann
database.

integrates incremental learning with the MDCC framework, it uses increas-
ing tensors for training instead of using total training tensors for learning at
one time.

To DCC and IDCC, the normalized silhouettes with 64 x 48 pixels were
converted into 3072 dimensional vectors (D = 3072). Each image set had
20 vectors (N = 20) and was represented as a d-dimensional subspace (d =
10). To IMDCC, MDCC and DATER, the dimensions of original data were
I, = 64, I, = 48, I3 = 20, while the dimensions of subspaces were set to be
J1 =10, Jo =17, J3 = 4, respectively.

4.8. Computational Issues

Given an N-order tensor A € RI1X+XIN which is dimensional reduced to
be B € R/1**IN here I,, J, are the dimensions of mode-n A and B, re-

spectively. For simplicity, it is assumed that [} = ... = Iy = (H;V:l I,)/m =
Iand Jy = ... = Jy = ([[2_, J,)/™ = J(J < I) likewise. From the com-

putational complexity point of view, the most demanding steps of DATER
[17] during training process are calculating the intra-class and inter-class
scatter matrices, and the eigen-decomposition in tensor subspace. The com-

14



(a) (b) () (d) ()
(f) () (h) (i) )

Figure 4: key silhouettes of ten actions from the Weizmann database.(a)bend, (b)jack,
(¢c)jump, (d)pjump, (e)run, (f)side, (g)skip, (h)walk, (i)wavel, (j)wave2.

putational cost of DATER is O(MNIYN*! + NI3), where M is the number
of total training samples, each of which is an N-order tensor. While the
total training computational cost of MDCC is O(M NI?JN=1 + NI3), which
is less than that of DATER because of J < I. Accordingly, the compu-
tational cost of IMDCC is O(NI*JV~! + NTI3), which is far less than that
of MDCC and DATER. The most demanding steps of DCC [12] training
process are calculating the intra-class and inter-class scatter matrices, and
eigen-decomposition. Considering the image vectorization, the training com-
putational cost of DCC is O(MI(IV=1)2 + (IN71)%) = O(MI?N-1 4 [3N=3),
While the computational cost of IDCC [13] is O(I*N=! 4 [3¥=3). When
N > 2, the computational cost of IDCC is far more than that of IMDCC. In
a word, the computational time of IMDCC is less than the other methods
mentioned above.

4.4. Action recognition experiment

The 90 videos contain ten categories of actions including bending (bend),
jacking (jack), jumping (jump), jumping in places (pjump), running (run),
galloping-sideways (side), skipping (skip), walking (walk), single-hand wav-
ing (wavel), both-hands waving (wave2), which are performed by nine sub-
jects. The centered key silhouettes normalized to the size of 64 x 48 pixels
for each action are shown in Fig. 4.

Fig. 5 demonstrates the recognition accuracy of IMDCC/MDCC and the

15
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Figure 5: Recognition accuracy in the incremental stage.

other methods with the increasing training samples. The initial training set
contained one-sixth of the total training samples with ten categories of ac-
tions. The remaining training set included five-sixth of the total training
samples, one-sixth of which were added at each incremental stage for re-
training. The IMDCC achieved approximate accuracy as MDCC, provided
that enough components of the intra-class and inter-class canonical corre-
lations were stored in multi-linear subspace. The IMDCC/MDCC methods
had better accuracy than IDCC and DCC. The main reason is that IMD-
CC/MDCC have captured more effective information by preserving the o-
riginal spatial structure of the samples. The performance of DATER was
worse than IMDCC/MDCC, since DATER is based on single sample match-
ing without exploiting the canonical correlations of multiple samples, and it
hasn’t updated the discriminant information by incremental learning.
Experiment on efficiency was performed between IMDCC and IDCC. Ta-
ble 1 shows the experimental result, which lists how many seconds the train-
ing procedure cost using different number of samples. Fig. 6 illustrates the
comparable results, which demonstrates that the computational cost is far
lower on tensor data rather than matrix representation of data. Because it
takes substantial time to calculate the discriminant transformation matrix
of IDCC, we have chosen only a few samples for illustrating the training

16



Table 1: Computational time during training procedure.

Number
Time (s) 5 10 15 20
IMDCC 2 2 25 3
IDCC 120 240 450 545
EDD T T T T
el | —s—mocce i
—=—DCC
g 400t .
‘%’ 300 F .
£
'_
£ 200} .
S 100 .
L
0 e ) i
5 10 15 20

Mumber of Samples

Figure 6: Computation efficiency of IMDCC and IDCC.

complexity comparison.

4.5. Robustness experiment

To test the robustness of the proposed method, an experiment was setup
where the walking samples also came from the Weizmann database. In this
experiment, a total of ten categories of walking actions were taken into con-
sideration, including walking with a dog, swinging a bag, walking in a skirt,
occluded feet, occluded by a "pole”, moonwalk, limp Walk, walk with knees
up, walk with a briefcase and normal walk. Fig. 7 shows samples of centered
key silhouettes which were normalized to the size of 64 x 48 pixels for each
actions.
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Figure 7: key silhouettes of walking from Weizmann database. (a) walking with a dog,
(b) swinging a bag, (c¢) walking in a skirt, (d) occluded feet, (e) occluded by a ”pole”, (f)
moonwalk, (g) limp Walk, (h) walk with knees up, (i) walk with a briefcase, (j) normal
walk.

We extracted 98 samples from the walking videos for robustness testing.
Fig. 8 shows the robustness experimental accuracies of IMDCC/MDCC and
the other methods in the incremental stage. It is easy to see that the accuracy
of each method has descended compared with the first accuracy experiment.
The performance of MDCC and the IMDCC were quite similar to each other
initially because of the same initial samples. However, the IMDCC outper-
formed the MDCC in the last two incremental stage because the discriminant
transformation matrices are more effective by being updated incrementally.
The IDCC and DCC achieved much better accuracies than the DATER be-
cause the canonical correlations of multiple samples preserve more effective
discriminatory information than a single sample does.

5. Conclusion

This paper proposes a novel CCA-based feature extraction method, which
iteratively learns the multi-linear discriminant subspace using the canonical
correlations between different samples, named MDCC. We develop an online
learning scheme for the MDCC named IMDCC, which is an optimization
approach. IMDCC incrementally updates the discriminant transformation
matrices, which can maximize the canonical correlations of intra-class sam-
ples while minimize the canonical correlations of inter-class samples.
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Figure 8: Robustness accuracy in the incremental stage.

The features of IMDCC combined with NNC significantly improved the
accuracy of state-of-the-art action recognition methods. IMDCC is also prac-
tically appealing as it is robust against partial occlusion. Additionally, IMD-
CC was shown to be highly time efficient in training procedure, thus offering
an attractive tool for recognition involving a large-scale database. Besides,
IMDCC converges by iterative learning and also reduces the curse of dimen-
sionality problem.

A sparse version of IMDCC will be proposed as future work, which re-
duces the chance of including unimportant variables in the canonical vectors
and thus obtains better classification capability in multi-linear discriminant
subspace. The action video will be used directly without extracting silhou-
ettes, for the raw images reserve more sufficient spatial information.
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