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Abstract

There is an increasing interests in micro-expression researches. Spotting
micro-expressions in long-term videos is very important, not only for provid-
ing clues for lie detection, but also for reducing the labor required to collect
micro-expression data. However, little progress has been made in spotting
micro-expressions. In this paper, we propose a Main Directional Maximal D-
ifference (MDMD) Analysis for micro-expression spotting. MDMD uses the
magnitude maximal difference in the main direction of optical flow features to
spot facial movements, including micro-expressions. Using block structured
facial regions, MDMD obtains more accurate features of movement of ex-
pressions for automatically spotting micro-expressions and macro-expressions
from videos. This method involves both the temporal and spatial locations
of face movements. Evaluations using the CAS(ME)2 database containing
micro-expressions and macro-expressions show that MDMD is more robust
than some state-of-the-art algorithms.
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1. INTRODUCTION

Telling a lie is very common in human social intercourse. Lies are ex-
tremely difficult to detect although everyone has deceived others or has been
deceived even specialists cannot detect them. The polygraph is employed
in the traditional lie-detection system to monitor uncontrolled transforma-
tions in heart rate and electro-dermal responses when the subject is telling
a lie. However, the polygraph makes incursion into the private space of the
subject, and the subject can take steps to conceal their true emotions [1].
Recently, psychologists have found that micro-expressions provide importan-
t clues for detecting lies. Micro-expressions may appear when individuals
are hiding their real emotions. Micro-expressions are very rapid and tiny,
especially in high-stake situations [2] [3]. A lie detection system based on
micro-expressions captures facial movements using a concealed camera dur-
ing a conversation or interview, and therefore, the person will not realize
that he is being observed when he is lying. Spotting micro-expressions from
long-term videos of facial movements is a key technology that can be used in
a lie detection system based on micro-expressions.

Research on facial expressions originated with Darwin et al. [4]. A previ-
ous study conducted by Mehrabian et al. [5] revealed that 55% of messages
regarding feelings and attitudes are conveyed by facial expressions. Micro-
expressions were first discovered by Haggard et al. [6], and were called rapid
expressions that showed repressed emotions. Ekman et al. [2] found this
type of expression by observing a psychotic inpatient, who wanted to com-
mit suicide but concealed the negative expression within 1/12 of a second by
smiling and named it a micro-expression. A Facial Action Coding System
(FACS) [7] and a Micro Expression Train Tool (METT) were developed lat-
er. Micro-expressions can reveal authentic emotions and are considered one
of the most important non-verbal methods for determining clues to judge
whether someone is lying or being honest [8] [9]in important areas, such as
clinical medicine [10] [11] [12] and political psychology [13]). There is ex-
tensive research concerning facial expressions, however, knowledge regarding
micro-expressions needs to be further studied.

Spotting and automatically recognizing micro-expressions are indispens-
able and a field of frontier research related research is rare. In micro-
expression recognition, several studies have been published. Polikovsky et
al. [14] recognized micro-expressions based on a 3D-Gradient orientation
histogram descriptor. Pfister et al. [15] developed the Temporal Interpola-
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tion Model (TIM), which handles dynamic features by spatiotemporal local
texture descriptors (SLTD) and then uses a Support Vector Machine (SVM),
Multiple Kernel Learning (MKL) and Random Forest (RF) classifiers to rec-
ognize spontaneous facial micro-expressions. Meanwhile, Pfister et al. [16]
proposed a new spatiotemporal local texture descriptor (CLBP-TOP) to dif-
ferentiate spontaneous vs. posed (SVP) facial expressions. Wang et al. [17]
utilized a Discriminant Tensor Subspace Analysis (DTSA), which treated a
gray facial image as a third order tensor, and an Extreme Learning Machine
(ELM). However,the subtle movements of micro-expressions may be lost us-
ing this method. Wang et al. [18][19] established a novel color space model,
Tensor Independent Color Space (TICS), because color could provide useful
information for expression recognition. Then, they [20] used the sparse part
of Robust PCA (RPCA) to extract the subtle motion information of the
micro-expressions and Local Spatiotemporal Directional Features (LSTD) to
extract local texture features.

The amount of research regarding micro-expression spotting is less than
that for micro-expression recognition. Shreve et al. [21], [22] used a robust
optical flow method [23] to compute strain from the measured displacemen-
t (motion) observed in a video sequence to differentiate macro-expressions
from micro-expressions. Polikovsky et al. [14], [24] calculated the dura-
tion of the three phases of micro-expressions using a 3D-Gradient orienta-
tion histogram descriptor. Moilanen et al. [25] proposed a method based
on Local Binary Patterns (LBP) histogram features to obtain both tempo-
ral locations and spatial locations for micro-expression spotting. Xia et al.
[26] utilized Adaboost to estimate the initial probability for each frame and
used random walk to model the correlation between the frames. In this pa-
per, this method is called RW-Adaboost. Davison et al. [27] used a HOG
feature to replace the LBP feature in [25] and proposed an individualized
baseline threshold for spotting micro-expression. Current research on micro-
expression spotting is constrained by the micro-expression databases using
cropped micro-expression samples or short videos, except for Shreve et al.
[22]; unfortunately, the database used in Shreve’s study is still not publicly
available.

The number of micro-expression databases is far smaller than that of
macro-expression databases. There are only the following seven published
micro-expression databases: (1) USF-HD [22]; (2) the Polikovsky’s database
[14]; (3) SMIC (The Spontaneous Micro-expression Corpus) [15]; (4) SMIC2
[28]; (5) CASME (The Chinese Academy of Sciences Micro-expression) [29];
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(6) CASME II [30]; and (7) CAS(ME)2 (it has been accepted and will be
published soon). It is difficult to elicit micro-expressions and encode them.
This is the main reason why there are few micro-expression databases. The
work to manually code frame by frame is tedious and very time consuming.
Although the accuracy of spotting micro-expressions has not achieved a sat-
isfactory level currently, it can greatly reduce the work of manual coding.
Spotting micro-expressions is not only an essential step for micro-expression
recognition, but is also significant for reducing manual codes and increasing
the efficiency of obtaining databases.

This paper is an extended version of our Asian Conference on Computer
Vision (ACCV) paper [31] in which we proposed using a Main Directional
Maximal Difference (MDMD) analysis to spot micro-expressions in long-term
videos. In this paper, we analyze the influence of the parameters on perfor-
mance and compare MDMD to some state-of-the-art algorithms for spotting
micro-expressions. The remainder of this paper is organized as follows. In
Section 2, we will introduce the pre-process, propose the Main Directional
Maximal Difference (MDMD) analysis, and analyze the influence of the pa-
rameters k on the performance. In Section 3, a database based on long videos
will be introduced. MDMD, LBP, HOG, and RW-Adaboost are conducted
using the database, and the parameters of MDMD are thoroughly discussed.
Finally, in Section 4, conclusions are drawn, and several issues for future
work are described.

2. Main Directional Maximal Difference Analysis

To improve the micro-expression spotting performance on long-term videos,
we proposed a Main Directional Maximal Difference (MDMD) Analysis. The
main steps of our method are as follows: (1) Pre-processing, including facial
alignment, cropping and dividing facial images into a block-structure; (2)
applying a robust local optical flow (RLOF) on the block-structure facial
regions; (3) measuring features frame by frame by calculating the maximal
difference values in the main direction of the optical flows (MDMD feature);
and (4) proposing a threshold and spotting micro-expressions based on the
MDMD feature.

2.1. Face alignment, face cropping and block-structure

The inner eye corners were calibrated manually in the first frame of the
video to align the faces using a non-reflective similarity transformation. A

4



non-reflective similarity transformation supports translation, rotation, and
isotropic scaling. It has four degrees of freedom and requires two pairs of
points, which is similar to the affine transformation, which requires three
pairs of non-collinear points. The inner eye corners are relatively steady [32].
The same transformation is used in the remaining frames of the video. The
original image is shown in Fig. 1 (left) and the aligned image is shown in
Fig. 1 (right).

Figure 1: An example of face alignment.

Discriminative Response Map Fitting (DRMF) [33] can obtain the outline
points of a face, and we use it to crop the face (see Fig. 2). The cropped face
image is divided into b × b blocks. A 6 × 6 block structure is shown in Fig.
3. The structure comprises all the crucial parts of the face and guarantees
a relatively low computational complexity. The block structure is based on
the horizontal distance between the inner eye corners, the vertical distance
between the nasal spine point, and the line connecting the inner eye corners.
It is adaptable to faces of different sizes and maintained for each video in
this paper because of the measure of face cropping.

2.2. Robust Local Optical Flow

We employed a robust local optical flow (RLOF) [34] on the block-structural
facial regions to estimate facial motion. RLOF not only adapts different re-
gion sizes and moderates changing illuminations well but also possesses higher
effectiveness with a slight increase of computational complexity than stan-
dard KLT, especially when the assumptions made by Lucas/Kanade [35] are
violated.

The optical flow computes the motion of objects or scenes by detecting the
changing intensity of the pixels between two image frames over time. A pixel
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Figure 2: An example of face cropping using DRMF.

Figure 3: Examples of facial 6×6 block structure.
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at location (x, y, t) with intensity I(x, y, t) will move to the location (x+u, y+
v, t+△t) with intensity I(x+ u, y+ v, t+△t) between two frames. Because
of the constraints of temporal coherence, spatial coherence, and brightness
constancy, we obtain the equation of the intensity constancy within a small
identical region in two consecutive images:

I(x, y, t) = I(x+ u, y+ v, t+△t) (1)

d = (u, v)T denotes the displacement of the point at location (x, y, t), and
△t is a small temporal interval.

The RLOF method reduces the number of the Hampel estimator[36] pa-
rameters by shrinking the high and low flat segment to obtain the influence
function φ:

φ(ϵi, σ) =


2ϵi |ϵi| ≤ σ1

0 |ϵi| ≥ σ2
σ1(ϵi−sign(ϵi)·σ2)

1
2
(σ1−σ2)

otherwise.

(2)

ϵi is the i -th of all observations in Ω, Ω denotes an image region in which we
are interested, and σ1 and σ2 are scale parameters. In addition, ϵ is computed
as:

ϵ = ∇I(x)T · d+ It(x) (3)

with

∇I(x) = (Ix(x, t), Iy(x, t))
T (4)

x = (x, y) (5)

I(x, t) = I(x, t− 1) + It(x) (6)

Ix(x, t), Iy(x, t)) and It(x) are, respectively, the x directional, y direction-
al and temporal derivative of I(x, y, t). The inverse compositional RLOF
residual error represents the integrals derived from φ(ϵi, σ) as:

ERLOF =
∑
Ω1⊂Ω

ϵ2 +
∑
Ω3⊂Ω

σ1σ2 +
∑
Ω2⊂Ω

(
σ1

σ1 − σ2

(|ϵ| − σ2)
2 + σ1σ2) (7)

To gain the displacement d, the residual error ERLOF is minimized,and
x ∈ Ω, Ω1, Ω2, Ω3 are the subset of data in Ω fulfilling, respectively, |ϵi| ≤ σ1,
σ1 < |ϵi| < σ2 and |ϵi| ≥ σ2.The estimation of d can be solved to the
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displacement ∆d by an iterative solution in a Newton-Raphson fashion [37]:

∆dk = G−1
RLOF ·

[ ∑
Ω1⊂Ω

∇I(x) · Ik−1
t (x) +

∑
Ω2⊂Ω

σ1

σ1 − σ2

·

∇I(x) ·
(
Ik−1
t (x)− sign(Ik−1

t (x)) · σ2

) ] (8)

G is the modified Hessian matrix:

GRLOF =
∑
Ω1⊂Ω

∇I(x) · ∇I(x)T +
∑
Ω2⊂Ω

σ1

σ1 − σ2

∇I(x) · ∇I(x)T (9)

The dk is updated as:
dk−1 +∆dk → dk (10)

thus, the intensity of the next frame after updating at each iteration k is:

I(x, t) = I(x+ dk−1, t− 1) + Ik−1
t (x) (11)

The iterative solution is initialized with d = (0, 0)T , L2 norm is utilized as
a monotone φ for the first iteration, and the non-monotone φ corresponding
to the non-convex shrunk Hampel norm is added to cycles for the remainder
of the iterations.

2.3. Main Directional Maximal Difference Analysis

Given a video with n frames, the current frame is denoted as Fi. Fi−k

is the k-th frame before the Fi, and Fi+k is the k-th frame after the Fi.
The optical flow between the Fi−k frame (Head Frame) and the Fi frame
(Current Frame) after alignment is denoted by (uHC , vHC). For convenience,
(uHC , vHC) means the displacement of any point. Similarly, the optical flow
between the Fi−k frame (Head Frame) and the Fi+k frame (Tail Frame) is
denoted by (uHT , vHT ). Then, (uHC , vHC) and (uHT , vHT ) are converted from
Euclidean coordinates to polar coordinates (ρHC , θHC) and (ρHT , θHT ), where
ρ and θ represent, respectively, the magnitude and direction.

The main direction of the optical flow can well characterize micro-expressions [38].
Based on the directions {θHC}, all the optical flow vectors {(ρHC , θHC)} are
divided into a directions (see Fig. 4). The Main Direction Θ is the direction
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Figure 4: Eight directions in the polar coordinates.

.

that has the largest number of optical flow vectors among the a direction-
s. The main directional optical vector (ρHC

M , θHC
M ) is the optical flow vector

(ρHC , θHC) that falls in the Main Direction Θ.

{(ρHC
M , θHC

M )} = {(ρHC , θHC)|θHC ∈ Θ} (12)

The optical flow vector corresponding to (ρHC
M , θHC

M ) between Fi−k frame and
Fi+k is denoted as (ρHT

M , θHT
M ).

{(ρHT
M , θHT

M )} = {(ρHT , θHT )|(ρHT , θHT ) and (ρHC
M , θHC

M )

are two different vectors of the same point in Fi−k}
(13)

After the differences ρHC
M − ρHT

M is sorted in a descending order, the max-
imal difference di is the mean difference value of the first 1

3
of the differences

ρHC
M − ρHT

M to characterize the frame Fi as in the formula:

d =
3

g

∑
max

g
3

{ρHC − ρHT} (14)

where g = |{(ρHC , θHC)}| is the number of elements in the subset {(ρHC , θHC)},
and maxm S denotes a set comprised of the first m maximal elements in the
subset S.
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In practice, we employ the b × b block-structure that was introduced in
Section 2.1. We will calculate the maximal difference dij (j = 1, 2, . . . , b2) for
each block in the Fi frame. For frame Fi, there are b

2 maximal differences dij
due to the b×b block structure. We arrange the b2 maximal differences dij in a
descending order where d̄i is the first s maximal difference and characterizes
the frame Fi feature:

d̄i =
1

s

∑
max

s
{dij} j = 1, 2, . . . , b2 (15)

If a person maintains a neutral expression at Fi−k, his emotional ex-
pression, such as disgust, starts at the onset frame between Fi−k and Fi, is
repressed at the offset frame between Fi and Fi+k, and then his facial expres-
sion recovers a neutral expression at Fi+k, which is presented in Fig. 5. In
this circumstance, the movement between Fi and Fi−k is more intense than
the movement between Fi+k and Fi−k because the expression is neutral at
both Fi+k and Fi−k. Therefore, the d̄i value will be large. Another situation
is a person maintaining a neutral expression from Fi−k to Fi+k. The move-
ment between Fi and Fi−k is similar to the movement between Fi+k and Fi−k;
thus, the d̄i value will be small. In a long video, sometimes an emotional ex-
pression starts at the onset frame before Fi−k and is repressed at the offset
frame after Fi+k (see Fig. 6). In this case, the d̄i value will also be small if k
is set to be a small value. However, k cannot be set as a large value because
this would influence the accuracy of the computing optical flow.

F F Fi i+ki-k
offset frameonset frame

Figure 5: An emotional expression starting at the onset frame between Fi−k and Fi is
repressed at the offset frame between Fi and Fi+k and recovers a neutral expression at
Fi+k

.
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F F Fi i+ki-k
offset frameonset frame

Figure 6: An emotional expression starting at the onset frame before Fi−k is repressed at
the offset frame after Fi+k

.

2.4. Expression Spotting

We employed a relative difference vector for eliminating the background
noise , which was computed by

ri = d̄i − 1

2

(
d̄i−k+1 + d̄i+k−1

)
i = k + 1, k + 2, . . . , n− k (16)

As shown in Fig. 7(a), we excluded the first and the last k frames of the
video because the negative difference values illustrated that the movement
between Fi and Fi−k is more subtle than the movement between Fi+k and
Fi−k. Accordingly, all negative difference values were set to zero (see Fig.
7(b)).

A threshold was used to obtain the frames that had peaks representing
the facial movements in a video

threshold = rmean + p× (rmax − rmean) (17)

where rmean = 1
n−2k

∑n−k
i=k+1 r

i and rmax = maxn−k
i=k+1 r

i are the average and

the maximum of all ri for the whole video. The parameter p is a variable
parameter in the range [0, 1]. The threshold is more adaptive to improve the
robustness of micro-expression detection in long videosIt is denoted as the red
dashed line in Fig 7. The frames with difference values above the red dashed
line are the frames where expressions appear. The green areas denote the
durations of the expressions or blinks. Spotting results of LBP for the same
video is presented in Fig. 8. For the same video, the differences obtained
from MDMD features are more notable than those from LBP features.
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Figure 7: Spotting results of a video named 16 0102 using the MDMD feature on the
CAS(ME)2 database.
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Figure 8: Spotting results of a video named 16 0102 using the LBP feature on the
CAS(ME)2 database.
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3. EXPERIMENTS

3.1. CAS(ME)2 database

To our knowledge, there are no publicly available databases that contain
macro-expressions and micro-expressions in long videos that can be used for
spotting expressions. The Chinese Academy of Sciences Macro-Expressions
and Micro-Expressions (CAS(ME)2) database will be the first publicly avail-
able database comprising both spontaneous macro-expressions and micro-
expressions in long videos (Part A) and separate samples (Part B); macro-
expressions and micro-expressions were collected from the same participants
under the same experimental conditions.

In the CAS(ME)2 database, Part A includes 87 long videos of spontaneous
macro-expressions and micro-expressions collected from 22 participants and
Part B contains 300 spontaneous macro-expression samples and 57 micro-
expression samples. The CAS(ME)2 database used a Logitech Pro C920
camera with 30 frames per second and a resolution of 640×480 pixels, which
satisfied the constraint of steady consistent brightness. The expression sam-
ples were selected from more than 600 elicited facial movements and were
coded with the onset, apex, and offset frames, with AUs marked, emotions
labeled, and a self-report for each expression.

3.2. Experimental Evaluation

In Part A of CAS(ME)2, there are 87 long videos. Among these videos, 28
videos were removed because there are relatively large movements of the head.
Thus, we use 59 videos that include 152 macro-expressions and 38 micro-
expressions. The maximum duration of the macro-expressions is more than
500 ms and less than 4 s, and the maximum duration of micro-expressions is
no more than 500 ms. The average durations of the macro-expressions and
micro-expressions are approximately 1305 ms and 419 ms, respectively.

According to the average durations of macro-expressions and micro-expressions,
k is set to 12. The numbers of blocks are 5× 5, 6× 6, 7× 7 and 8× 8. The
number of directions are 4, 6, 8 and 10. Fig. 9 shows the ROC curves for the
16 different combinations. The 16 ROC curves are almost consistent, showing
that the performance of MDMD is stable for the block size and the number
of directions. Among the 16 combinations, AUC (Area Under Curve) has
the highest value of 0.5862 for the combination where the number of blocks
is 6 × 6 and the number of directions is 4. If the number of blocks is fixed,
AUC obtains the highest value when the number of blocks is 4.
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Figure 9: ROC curves for 16 different combinations.
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To evaluate MDMD, we applied the LBP feature [25], HOG feature [27],
and RW-Adaboost [26] to the same dataset. For the LBP feature, we used
6×6 blocks and set k as 10. For the HOG feature, Spatial HOG features are
extracted using Piotr Dollar’s Matlab Toolbox. The number of direction bins
is set as 8, and the signed gradient direction binning is set as 2π. The number
of blocks is 6 × 6, and k is set as 15. For RW-Adaboost, all parameters are
set as described in [26]. The random walk framework (with α = 0.4 and 20
update times) was used to generate the final probability after the procedures
such as procrustes analysis, and a geometric deformation (with β = 0.7 and
L+1 frames is a temporal window where L = 6) and Gentle AdaBoost using
GML AdaBoost Toolbox (with 30% data for training 40 iterations ) were
performed. The ROC curves of the four methods are plotted in Fig. 10.
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Figure 10: ROC curves of MDMD, LBP, HOG and RW-Adaboost.

Among the four methods, the AUC of MDMD obtains the best value
of 0.5852. When the False Positive Rate (FPR) is less than 0.21, the True
Positive Rate (TPR) of MDMD is better than those of the other three meth-
ods. MDMD performs better than the three other methods when the FPR
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Figure 11: MDMD ROC curves with various k

decreases. When the FPR is greater than 0.33, the ROC curves of MDMD,
LBP and HOG are almost consistent and parallel to the line whose angle
with the abscissa is 45 degrees. It shows that when the FPR is greater than
0.33, the predications of the three methods are random. For spotting facial
movements, the random probability of predication is 0.5 (movement or not).
When the FPR is greater than 0.21, RW-Adaboost is slightly better than the
other three methods. The reason is that the Adaboost classifier is slightly
better than the random level.

We select various k (k = 6, 12, 18, 24, 48, 96) to repeat the same experi-
ment. Given k, there are 16 ROC curves on various numbers of blocks and
directions. The 16 ROC curves have the same color in Fig. 11. The 16
ROC curves are almost consistent for each k (expect for k = 6). This again
demonstrates that the performance of MDMD is stable for the numbers of
blocks and directions. With an increasing k value, the AUC is larger. Al-
though AUC of k = 96 is slightly larger than that of k = 48, the performance
of k = 48 is better than that of k = 96 because the slope of the curve of
k = 48 is larger than that of k = 96 in the case that the FPR is small. This
is coincident with the analysis of k in Section 2.3.

We select various k (k = 6, 12, 18, 24, 48, 96) and 5 × 5, 6 × 6, 7 × 7,
8× 8 blocks to repeat the LBP experiment. For each k, the ROC curve with
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Figure 12: The ROC curves with various k of MDMD, LBP, HOG and RW-Adaboost

the largest AUC is plotted in Fig. 12. For HOG and RW-Adaboost, the
same experiments are also conducted. With an increased k value, the AUCs
of LBP and HOG are larger. Although the AUC of LBP is slightly larger
than that of MDMD, the performance of MDMD is better than that of LBP,
because the slope of the curve of MDMD is larger than that of LBP in the
case where the FPR is small.

Recall, Precision, and F1 score are also used to measure experimental
results. There are two classes (movement frame and non-movement frame).
The number of correct positive results of the cth class is cpc, apc is the number
of all positive results of the cth class and rpc is the number of positive results
that should have been returned of the c class [39]. Precision and Recall are
defined as follows:

Precision =
1

2

2∑
c=1

cpc
apc

(18)

and

Recall =
1

2

2∑
c=1

cpc
rpc

(19)

However, the numbers of movement frames and non-movement frames are
not balanced. We use the F1 score to address this. The F1 score is defined
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as follows:

F1 = 2× Precision×Recall

Precision+Recall
(20)

For MDMD, we select the related best performance in the case with 8×8
blocks, 4 directions, p = 7, and k = 48. For LBP, we select the related best
performance in the case with 8×8 blocks, p = 11, and k = 48. For HOG, we
choose the parameters 6× 6 blocks and k = 48. For RW-Adaboost, k is set
as 6. These performances are listed in Table 1. On Recall, HOG obtains the
best performance, and MDMD obtains the second-best performance. HOG
is more suited for assisting in encoding micro-expressions. MDMD obtains
the best performance on Precision and F1 score.

Table 1: Recall, Precision, and F1 score of MDMD, LBP, HOG and RW-Adaboost

Recall Precision F1 score

MDMD (p = 7, k = 48) 31.90% 35.21% 33.48%
LBP (p = 11, k = 48) 27.17% 32.26% 29.50%

HOG (k = 96) 46.89% 18.15% 26.17%
RW-Adaboost (k = 6) 9.30% 26.13% 13.72%

We also investigate the influence of s in Eq. 15 on the performance of
MDMD. All parameters are the same as those in the previous experiments.
The parameter s varies from 1 to 64. The AUCs of MDMD are plotted in
Fig. 13. The curve is parallel to the abscissa. It shows little influence on the
performance of MDMD.

4. CONCLUSION

In this paper, we proposed a Main Directional Maximal Difference (MD-
MD) Analysis for micro-expression spotting. We pre-processed databas-
es that included facial alignment, cropping and division primarily by non-
reflective similarity transformation. Based on block structured facial regions,
we calculate robust local optical flows. We propose MDMD to obtain more
accurate features of the movement of expressions; the MDMD feature was
used to spot micro-expressions. The results were evaluated on CAS(ME)2

databases (and CASME) using four methods, MDMD, LBP, HOG, and RW-
Adaboost. On the CAS(ME)2 database, MDMD performs well in spotting
micro-expressions from long videos.
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Figure 13: The influence of s in Eq. 15 on the performance of MDMD.
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