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a b s t r a c t 

Facial Action Unit (AU) recognition is an essential step in the facial analysis. A facial image has one 

or more AU(s). Given an AU, the number of images without the AU is far greater than that of images 

with the AU. So, AU recognition is not only a sample imbalance problem but also a multi-label learning 

problem. For the two problems, we proposed a novel Multi-label Slope Rate (MSR) loss function and an 

Advanced-MSR (Ad-MSR) loss function in deep network architecture to recognize AU. For other characters 

of AU recognition, a local convolution and residual units are used in the architecture. The experimental 

results on two expression databases labeled AU show that the proposed loss functions not only address 

overfitting of the network on the training set and enhancing the generalization ability on the test set. 

The proposed architecture also gets well performance in the databases. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Facial Action Unit (AU) recognition is an essential step in

the facial analysis. Without a robust AU recognition method,

facial expression recognition, micro-expression recognition, and

so on facial related action problems cannot be effectively solved.

Especially, micro-expression recognition needs more robust AU

recognition method, because of subtler muscle movements of

micro-expression compared with common expressions [1] . Ekman

and Friesen [2] proposed Facial Action Coding System (FACS),

which is a comprehensive system for describing facial expression

by Action Units (AUs). An AU or AU combinations describe a facial

expression. For example, AU6 means rising the cheeks and AU12

means pulling lip corners obliquely. While the combination of

AU6 and AU12 describe smile. However, this descriptive power is

still costly, because manual FACS coding is a very time-consuming

task. It often takes a long time for a coder to have an acceptable

capability. Once a FACS coder achieves can meet the requirement,

it can take a time or longer to encode a video of tens of seconds,

and we must always pay attention to the reliability of the encoder.

To be able to use FACS more efficiently, computer vision can meet

this requirement and automate AU coding. Although significant
∗ Corresponding author. 
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rogress has been made in achieving this goal [3–6] , automatic AU

ecognition is a challenging problem. 

For decades, many methods of AU recognition have proposed by

any researchers. Zhong et al. [7] uses structured regional learning

o improve the accuracy of general basic expressions, this method

xtracts important points of the face as local areas, which can re-

uce irrelevant features and increase the accuracy of identifying

pecific features. Facial landmark points play a crucial role in AU

ecognition. Many conventional methods extract texture features

ear the landmark points. Valstar and Pantic [8] extracted Gabor

avelet near 20 landmark points as features and put them into Ad-

boost and SVM to recognize AU. The facial structure information

s obtained by measuring the normalized landmark distances, and

he angles of the Delaunay mask formed by the landmark points.

n AU detection, the methods of feature extraction are becoming

ore and more mature. In general, there are geometric features

5,9] , texture features [10,11] , dynamic features [12–14] or feature

usions [15] . These features are usually quantized by histograms.

ian et al. [16] claimed that the automatic face analysis system

hould recognize fine-grained changes in facial expression into AUs

f the FACS, instead of a small set of prototypic expressions, such

s happiness, anger, surprise, and fear. They extracted facial struc-

ure information as the input of the neural networks with one

idden layer to recognize AUs and AU combinations. Tong et al.

17] used a dynamic Bayesian network to model the relationships

Us and their temporal evolutions for AU recognition. 

https://doi.org/10.1016/j.neucom.2019.05.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.05.018&domain=pdf
mailto:wangsujing@psych.ac.cn
https://doi.org/10.1016/j.neucom.2019.05.018
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Table 1 

Five samples with 11 AUs from EmotionNet Database. 0 means the sample has not the corresponding AU. 1 means 

the sample has the corresponding AU. 

No. Samples AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU17 AU20 AU25 AU26 

1 0 0 0 0 1 0 1 0 0 1 0 

2 0 0 0 0 1 0 1 0 0 1 1 

3 0 0 0 0 1 0 1 0 0 0 1 

4 0 0 0 0 0 0 1 0 0 1 0 

5 0 0 0 0 0 0 0 0 0 1 0 
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The model makes AU recognition more reliable, robust, and

onsistent. Given an image or video sample, it maybe includes one

r more AU(s). That means a sample has multi-label. So, AU recog-

ition is a multi-label learning problem. However, it is difficult to

btain a complete label assignment for each example. There is a

trong correlation [18,19] between AUs. For example, when a per-

on smiles, AU6 and AU12 will often appear at the same time. The

ulti-label learning method in AU detection takes advantage of

his strong association, which makes the model have higher classi-

cation accuracy [20] . Wu et al. [21] propose a method for multi-

abel learning that explicitly handles missing labels. Zhao et al.

22] leveraged group sparsity to identify important facial patches,

nd learns a multi-label classifier constrained by the likelihood

f co-occurring AUs. They proposed Deep Region and Multi-label

earning (DRML) [23] to recognize AUs. In the part of the shallow

etwork, they introduced a new region layer to extract the features

f AUs, then combine the region features and used a deep network

o extract higher-level features for classification of the expression. 

AU recognition also suffers from the sample imbalance prob-

em, that is, the frequency of one class with a given AU can be

00 times less than another class without the AU. The problem

as a significant detrimental effect not only on traditional classi-

ers but also on recent deep learning technology. It affects both

onvergence during the training phase and generalization of a net-

ork on test sets. Methods for addressing the sample imbalance

roblem are generally divided into two categories [24] . 

One category is data level methods changing class distribution

raining set by replicating or removing some samples. In the

ategory, undersampling and oversampling are two methods often

sed. Undersampling removes some samples from the majority

lass randomly. So it discards a portion of available samples and

s not suitable for deep learning especially, in the small sample

ase. Oversampling directly replicates randomly samples the from

inority class. Oversampling is one of the most commonly used

nd effective methods in deep learning. However, it maybe lead

o overfitting of the network on the training set and reducing

he generalization ability on the test set. Furthermore, to directly

pply of oversampling is not suitable for AU recognition, because

U recognition is a multi-label task. A sample has more labels.

or example, each image sample from EmotionNet Database has

1 labels. Table 1 lists 5 samples with 11 AUs from EmotionNet

atabase. In the table, 0 means the sample has not the correspond-

ng AU and 1 means the sample has the corresponding AU. The

hree first samples have AU6, and the two last samples have not

U6. To balance samples based on AU6, oversampling replicates
o. 4 sample or No. 5 sample. The replicate can lend to more im-

alance for AU25, AU26, and so on. To relieve the problem, Charte

t al. [25] produce synthetic samples instead of directly replicate. 

Another category is model level methods adjusting models

r algorithms while keeping the training set unchanged. Cost-

ensitive learning is one of the methods in the category. It as-

igns different cost to misclassification of examples from different

lasses [26] . Borrowed from the idea, we use different cost to pro-

ose novel loss functions to address the sample imbalance problem

n multi-label learning tasks. 

In this paper, we use CNN and residual unit to build network ar-

hitecture. To get better performance for AU recognition, the idea

f the local convolution is introduced into the architecture. For the

ample imbalance problem in multi-label learning, we proposed a

ovel Multi-label Slope Rate (MSR) loss function by using the pro-

ortions of positive and negative samples in each batch. Further-

ore, we proposed an Advanced-MSR (Ad-MSR) loss function by

sing the loss value of the previous batch to enhance the perfor-

ance of MSR. The proposed methods are evaluated two expres-

ion databases with AU labels. 

. Deep Spatial-Convolutional and Multi-label Residual network 

.1. DSCMR architecture 

In some situations, CNN has greatly improved the performance

f the vision system, including facial verification [27–29] , object

etection [30] , and video tracking [31] . For AU recognition, deep

NN can extract not only each AU feature but also the relationships

f AU. That leads to ensure the classification accuracy. There are

any AUs which may interact with each other. Their relationship

patial structure can be effectively captured by deep CNN. For ex-

mple, a surprise is coded as AU1 + 2 + 5 + 26. AU1 + 2 + 5 mean that

rows and upper eyelids are raised and occur in forehead. AU26

eans that lips are relaxed and parted; mandible is lowered. It oc-

urs in chin. The distance between forehead and chin is related

ong. The one or more layers of convolutional layers are hard to

ctivate neural unit in the same feature map. 

So multiple convolutional layers are needed, but this leads to

he number of layers in the network is very deep. Despite using

f ReLU and optimization technology, sometimes it is impossible

o avoid some problems such as vanishing gradient. To solve this

roblem, the residual learning [32] is used in our model. It has

roven to be very effective to use residual learning for training

ltra-depth neural networks with more than 10 0 0 layers. 
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Fig. 1. An illustration of the local convolutional layer. 
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The local feature is very important not only for face recognition

but also for expression recognition and AU recognition. A standard

convolutional layer assumes that weights are shared across an en-

tire image. However, facial images are non-grid and its structured

information is more important than the holistic information. Based

on that, we add the local convolutional layer [23] into the pro-

posed architecture. 

Fig. 1 shows that the local convolutional layer includes three

parts: patch clipping, local convolution, and identity addition. The

patch clipping part divides a 214 × 214 feature map into 8 × 8

blocks. Each block is followed by a Batch Normalization (BN) and

ReLU. A local convolution part captures local appearance changes

and forces the weights in each part to be updated independently.

An identity addition part is introduced along with shortcut con-

nection from the input block. 

Suppose x is the input, the desired underlying mapping is H ( x ).

If x is directly regarded as the initialized output. Then we let the

stacked nonlinear layers fit another mapping of F (x ) = H(x ) − x .

The original mapping is recast into F (x ) + x . It is easier to opti-

mize the residual mapping F (x ) + x than to optimize the original,

mapping H ( x ). The formulation of F (x ) + x can be realized by feed

forward neural networks with shortcut connections. Shortcut con-

nections are those skipping one or more layers. Simply, the short-

cut connections perform identity mapping, and their outputs are

added to the outputs of the stacked layers. Identity shortcut con-

nections add neither extra parameter nor computational complex-

ity. In this paper, each residual unit includes two convolutional

layers. 

ResNet-18 is used in our architecture. The input is 224 × 224

color face images. Following the input, the first convolutional layer

includes 64 filters of size 7 × 7 and is followed by a max-pooling

layer. There are 4 residual groups follow the max-pooling layer. The

numbers of filters in convolutional layers of each residual group

are 64, 128, 256, and 512. Each residual group includes two resid-

ual blocks with two 3 × 3 convolutional layers. In the first block,

a convolutional layer including the same number of filters of size

1 × 1 is used for the shortcut connection. In the second block, the

identity shortcut connection is used. Each convolutional layer is

followed by Batch Normalization (BN) [33] and Scale layers. The

first convolutional layer in each residual block is also followed by

ReLU. The second last layer is a fully connected layer with 2046

neural units. For a multi-label task with n labels, the last layer is
 fully connected layer with n neural units. To address the sample

mbalance problem, we use the proposed Multi-label Slope Rate

MSR) loss function and Advanced MSR loss function in the ar-

hitecture. The proposed architecture without the local convolu-

ional layer is called as DSCMR and the one with local convolu-

ional layer is called L-DSCMR. L-DSCMR Network Architecture is

hown in Fig. 2 . In the experiments, we compare the performances

f DSCMR and L-DSCMR. 

.2. Multi-label Slope Rate loss 

In this section, we introduce Multi-label Slope Rate (MSR) loss

unction that can solve the sample imbalance problem in AU recog-

ition. For the single label task, the sample space of i th AU is de-

oted as S ( i ) , 

 

(i ) = { S (i ) 
− , S (i ) 

+ } (1)

here, S (i ) 
+ denotes the space of positive sample with i th AU. And

 

(i ) 
− denotes the space of negative sample without i th AU. In reality,

he size of the set S (i ) 
− is far greater than the size of the set S (i ) 

+ .
his is the sample imbalance problem. We introduce the balance

actor γ to the cross-entropy loss function to address the problem.

he cross-entropy loss function can be written as follows 

 

(i ) 
cur = − 1 

m 

∑ 

j∈ S (i ) 

log P j = − 1 

m 

⎛ 

⎝ 

∑ 

j∈ S (i ) 
+ 

log P j + 

∑ 

j∈ S (i ) 
−

log P j 

⎞ 

⎠ (2)

here m is the number of all samples. P is the output of the net-

ork and indicates the probability of classification of i th AU oc-

urrence. In order to address the sample imbalance problem, The

alance factor γ ( i ) i th AU definite: 

(i ) = 

‖ S (i ) 
− ‖ 

‖ S (i ) 
+ ‖ 

(3)

here ‖ • ‖ denotes the cardinality of a set. If the number of nega-

ive samples is greater than the number of positive samples, γ ( i ) is

reater than 1. We combine γ ( i ) with Eq. (2) and get 

 

(i ) 
cur = − 1 

m 

⎛ 

⎝ 

∑ 

j∈ S (i ) 
+ 

γ (i ) I(γ (i ) > 1) log P j + 

∑ 

j∈ S (i ) 
−

γ (i )(−I(γ (i ) < 1)) log P j 

⎞ 

⎠ (4)
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local convolutional layer

..
..

..

Fig. 2. L-DSCMR network architecture. 
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here 

( condition ) = 

{
1 if condition is true ;
0 otherwise . 

(5) 

When the number of negative samples is greater than the num-

er of positive samples, we have γ ( i ) > 1. So we get I(γ (i ) > 1) = 1

nd I(γ (i ) < 1) = 0 . Eq. (4) will be following 

 

(i ) 
cur = − 1 

m 

⎛ 

⎝ 

∑ 

j∈ S (i ) 
+ 

γ (i ) log P j + 

∑ 

j∈ S (i ) 
−

log P j 

⎞ 

⎠ (6) 

ompare Eq. (6) with Eq. (4) , we find that the influence of positive

amples on loss is enlarged by multiplying γ ( i ) which is greater

han 1. So, the sample imbalance problem caused by related less

umber of positive samples is alleviated. 

For the multi-label task with n labels, the loss function can be

ritten following 

 multi = 

n ∑ 

i =1 

L (i ) 
cur (7) 

.3. Advanced MSR 

In the multi-label task, all labels shares hidden layers and

eights. In the procedure of network optimization, it suffers the

roblem of batch bias. The different training batch includes differ-

nt samples with huge difference on the number of type of AU.

hrough several batch training, the network is good at certain AUs,

nd not good at others. Through more several batch training, the

etwork is not good at the certain AUs, and good at others. In

he view of entire training procedure, the accuracy of each AU

ill fluctuate. This phenomenon comes from the adjustment of the

earning ability of the network to other labels, thus affecting the

ffect of the network on the overall multi-label task. Therefore,
e proposed Ad-MSR on the basis of MSR to smooth the network

raining process for multi-label learning. 

We define the L (i ) 
pre is the cost value of i th AU in the previous

teration. In our options, the procedure of the training network

s the procedure of updating weight matrices to make the error

pproximate 0. So, we can draw the conclusion that the error in-

ludes the information of impact to classification results caused by

he network. On generally, when weight matrices are updated, they

re subtracted by the actual gradient value and move to the direc-

ion of the minimum gradient. However, the historical information

f the training model has not been used during the entire training

rocedure. Therefore, we introduce the weight factor α during the

pdate and consider the current loss error by using the historical

raining information by the weighted average. 

 S = 

1 

n 

n ∑ 

i =1 

(
αL (i ) 

cur + (1 − α) L (i ) 
pre 

)
(8) 

here L (i ) 
pre is the loss value of i th AU in the previous iteration and

ncludes the historical training information by introduced with a

mall proportion (1 − α) . In the continuous iteration process, the

arlier training results have less influence on the current loss. In

ddition, because the network is required to finish a multi-label

earning, the current loss value need to be calculated by combining

he loss values of all labels. Here, we use the arithmetic mean of

he all label loss values as the final loss value for this iteration. The

istorical cost value L (i ) 
pre is updated by Eq. (9) before proceeding to

he next iteration: 

 

(i ) 
pre = αL (i ) 

cur + (1 − α) L (i ) 
pre (9)

n addition, a loss gain coefficient β ( i ) is introduced to indicate the

egree of deviation of i th AU for all AUs. After each calculation,

e can get each AU’s own error. For the AU with smaller errors,

t means that the network has better learning ability for it. At this

ime, β(i ) = 0 means that the learning ability of network is good
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Fig. 3. The samples come from EmotioNet database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The samples come from CK + database. 
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for i th AU. For the AU with larger error, it indicates that the net-

work has poor learning ability for it. So we increase the learning

ability of the AU. At this time, the β ( i ) coefficient is: 

β(i ) = 

(L (i ) 
cur − L S ) 

(L (i ) 
cur + L S ) 

+ 1 (10)

In order to ensure that β ( i ) ∈ [1, 2], β ( i ) is calculated by the relative

deviation of the loss values of each AU. The final loss function of

Advanced MSR can be written as follows: 

L = 

n ∑ 

i =1 

β(i ) L (i ) 
cur (11)

3. Experiments 

In the section, the proposed DSCMR framework is evaluated

by recognizing single AU1 and multi-AUs on two expression

databases: CK + [34] and EmotioNet [35] . We commence by exper-

imental settings and close by discussion. 

3.1. Experimental settings 

Database: We evaluated DSCMR in two databases that involve

posed and spontaneous facial behaviors in varied contexts. Each

database has been FACS-coded by well-experienced coders. 

1. EmotioNet database includes 950,0 0 0 images with anno-

tated AUs. AUs included in the database are AU1, AU2, AU4,

AU5, AU6, AU9, AU12, AU17, AU20, AU25, and AU26. The

database contains a large number of images from the face of

the network, and all of these images are marked with AUs.

The samples in the database are shown in Fig. 3 . 

2. The CK + database contains and 593 image sequences by

captured from 123 subjects. The last frame of each image

sequence is labeled with AU. In the 593 image sequences,

327 sequences have the label of the motion. The database is

one of the popular databases in facial expression recognition

( Fig. 4 ). 

Preprocessing and configuration: We registered face images to

224 × 224 using similarity transform [27,28]. Each face was hori-

zontally mirrored for data augmentation. All models were initial-

ized with the learning rate of 0.0 0 05, which was further reduced

after 20 0 0 iterations. For Eq. (8) , α = 0 . 5 . A momentum of 0.9 and

weight decay of 0.0 0 05 was used. All implementations were based

on the Caffe toolbox with modifications to support the region layer

and multi-label cross-entropy loss. 

Metrics: The performance was evaluated on two common

frame-based metrics: F 1-score and AUC. F 1-score is the harmonic
ean of precision and recall and widely used in AU recognition.

UC quantifies the relation between true and false positives. For

ach method, we computed the average metrics on all AUs. 

.2. Experimental results 

For the single label task for recognizing AU1, we vary propor-

ion of the positive (with AU1) and negative (without AU1) sam-

les by sampling from EmotioNet. In the process of manually sam-

ling, we gradually increased the gap between the positive and

egative samples, and proportions of negative and positive sam-

les are 5, 10, 20, and 30 times. In order to ensure the accu-

acy of the final verification effect, the number of positive sam-

les is the same as the number of negative samples in testing

ets. Based on AlexNet, we use Eq. (7) as the loss function, where

 = 1 . Accuracies and losses are plotted in Fig. 5 . For AlexNet with-

ut MSR, when the proportion of negative and positive samples is

 times, the loss of the testing set converges during the training

rocess, and also the recognition accuracy is more than 70%. How-

ver, when the proportion is 10 times, the network has been over-

tting, and the loss is not as good as that in 5 times. The accuracy

s also drastically reduced. The proportion is larger, and the perfor-

ance is worse. For AlexNet with MSR, the convergence of losses

re better, and the accuracy has been greatly improved. Accuracies

n the proportion of both 5 times and 30 times archive are about

0%. Moreover, the curves of accuracy in varying proportions are

lmost overlapped. The curves of loss are also almost overlapped.

hat means that the proposed MSR is robust to the proportions of

egative and positive samples. 

Based on the previous experiments, we compare the perfor-

ance of MSR and Advanced MSR on multi-label learning. We

till use AlexNet on EmotioNet database. The experiments are con-

ucted on the database with AU labels of 3, 5, 8, and 11. Table 2

ists the proportions of negative and positive samples of each AU

nd the accuracies of MSR and Ad-MSR in each AU. Among the 11

Us, the maximal proportion of positive and negative samples is

20.85 times, and the minimal proportion is 1.22 times. For ev-

ry AU, the accuracy of Ad-MSR is higher than that of MSR. The

iggest difference between the accuracies of MSR and Ad-MSR is

.61%, and the smallest difference is 1.16%. Table 3 list accuracies

f MSR and Ad-MSR of each AU when the numbers of AUs are 3,

, 8, and 11. As shown in the table, the accuracy of each AU is

ecreased with the increase in the number of AUs. We think that

his is caused by the fact that multi-label tasks share the network

nd the parameters have been shared. Unrelated tasks treat each

ther as noise and affect each other’s convergence during training

rocesses. When the number of AUs is increased from 3 to 11, we

ound that the accuracy of MSR was reduced by 1.36%, 0.2%, and
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Fig. 5. Accuracies and losses of AlexNet with and without MSR in which the proportions of negative and positive samples are 5, 10, 20, and 30 times. 

Table 2 

The accuracies of MSR and Ad-MSR on EmotioNet database at 11 AUs case. 

AU Train samples N:P MSR accuracy (%) Ad-MSR accuracy (%) AU Train samples N:P MSR accuracy (%) Ad-MSR accuracy (%) 

AU1 30.00 85.88 88.18 AU12 1.22 81.68 83.45 

AU2 57.36 71.23 73.01 AU17 191.70 70.68 74.73 

AU4 81.06 68.57 73.91 AU20 220.85 64.28 66.60 

AU5 105.94 63.80 67.72 AU25 2.37 87.23 89.63 

AU6 27.03 83.28 84.44 AU26 2.79 84.17 86.19 

AU9 152.51 68.76 74.37 

3  

n  

n  

o  

a  

t  
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A  

t  

p  

t  

c  

a  
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c  

b  

a  
.05% by observing AU1, AU2, and AU4. In order to better the phe-

omenon, we optimized MSR and proposed Ad-MSR. When recog-

izing an AU, Ad-MSR can learn some knowledge from recognizing

ther AUs to improve the network’s anti-noise and generalization

bility. For single AU, the performance of Ad-MSR is more stable

han that of MSR, with increasing the number of AUs. The accu-

acy was reduced by 0.18%, 0.28% and 1.39% by observing AU1, AU2,

U4. Compared with MSR, it is more stable. Besides, we also found

hat for the same AU, the accuracy of Ad-MSR is significantly im-
roved compared with that of MSR. The experimental results show

hat for multi-label learning, the loss gain β can improve the ac-

uracy for a single label by correcting its deviation from all labels,

nd use the relevance of other labels to improve network’s gener-

lization ability. 

AUs is distributed in different parts of a whole face, and the

hanges between different AUs will affect each other. This can

e effectively processed by deep CNN, which shows a powerful

bility to hierarchically capture spatial structure information [36] .
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Table 3 

The accuracies of MSR and Ad-MSR on EmotioNet database at 3, 5, 8, and 11 AUs cases. 

AU 3 AUs 5 AUs 8 AUs 11 AUs 

MSR Ad-MSR MSR Ad-MSR MSR Ad-MSR MSR Ad-MSR 

1 87.24 88.36 86.89 88.33 86.57 88.20 85.88 88.18 

2 71.33 73.28 72.94 73.04 71.94 72.99 71.53 73.00 

4 72.38 74.78 71.78 74.14 71.41 74.25 69.33 73.39 

5 67.69 67.64 65.21 68.42 63.85 67.72 

6 83.76 84.15 83.78 84.30 83.44 84.44 

9 71.45 75.47 69.14 74.73 

12 82.36 83.96 81.88 83.45 

17 73.53 72.42 70.89 74.04 

20 64.60 66.60 

25 87.52 89.62 

26 84.67 86.19 

Mean 76.98 78.81 76.61 77.46 75.78 77.50 75.70 78.31 

Table 4 

The results come from the EmotioNet database. [ Bold ] denotes the best performance. Bold denotes the second best performance. 

AU F 1-score (%) AUC (%) Train 

samples N:P 

Test samples 

N:P 

Validation 

samples N:P 
DRML ResNet18 AlexNet DSCMR AlexNet 

+ Ad-MSR 

L-DSCMR DRML ResNet18 AlexNet DSCMR AlexNet 

+ Ad-MSR 

L-DSCMR 

1 2.10 21.67 2.02 67.68 60.71 [89.84] 18.04 38.94 19.98 48.77 47.21 [49.77] 30.00 1.00 1.00 

2 3.40 3.93 3.49 [52.62] 50.34 51.42 17.51 36.29 18.94 49.75 49.46 [49.83] 57.26 5.34 5.28 

4 4.02 7.00 4.81 [37.37] 25.54 33.65 12.04 17.81 8.31 49.92 49.16 [53.78] 81.06 14.62 13.43 

5 5.19 7.62 5.26 [34.36] 27.31 28.36 6.55 0.99 4.82 49.77 [50.05] 49.93 105.94 14.44 14.32 

6 4.78 32.46 5.00 [47.51] 41.76 45.70 28.43 38.62 27.79 49.27 49.33 [50.46] 27.03 14.14 13.43 

9 1.33 10.09 5.01 [27.15] 22.72 22.18 9.39 13.99 6.69 [51.45] 49.80 50.47 152.51 26.75 26.39 

12 80.91 72.92 66.30 76.21 76.42 [83.09] 50.33 49.23 50.28 [51.13] 50.64 50.02 1.22 1.06 1.00 

17 9.58 17.24 2.01 18.21 6.93 [19.22] 4.42 50.08 16.97 55.84 52.76 [63.37] 191.70 74.45 101.53 

20 0.99 10.00 3.19 [27.53] 24.67 25.00 6.04 11.24 5.32 [50.10] 49.75 50.03 220.85 18.50 19.29 

25 80.44 70.28 54.72 72.05 66.42 [82.52] 47.80 49.50 48.28 [52.48] 51.01 50.31 2.37 2.68 2.40 

26 83.67 81.20 58.61 79.62 72.44 [88.32] 43.46 48.66 44.10 50.33 49.86 [50.55] 2.79 0.78 0.76 
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CNN can be used to extract features of a certain AU, and more

importantly, deep CNN can capture the spatial dependence

between multi-areas. We designed a deep CNN so that a convolu-

tional layer naturally captures the correlation between neighboring

AUs, and a stack of convolutional layers can capture the correlation

of even all AUs. In order to eliminate the negative impact of the

deep network, the residual unit is used in the proposed DSCMR

network structure. 

In order to evaluate the performances of DSCMR and L-DSCMR,

we compared it with the recent related work DRML on EmotioNet

and CK + databases. The same experimental setting was done on

AlexNet and ResNet18. Ad-MSR is also used as the loss function

in AlexNet denoted by AlexNet + Ad-MSR. And then we add to the

AlexNet loss calculation. 

Table 4 lists the F 1-scores and AUCs of the above methods for

11 AUs. AU1 is used as a benchmark with the proportion of neg-

ative and positive samples in the training set its training set is 30

times, and the proportion in the testing set is 1. That is intended to

evaluate the robustness of DSCMR with the increasing proportion

of negative and positive samples in the training set. As is shown

in Table 4 , the performances of DMRL, ResNet-18, and AlexNet

are not very good. DSCMR is more effective when facing the

proportion of negative and positive samples is larger. Compared

with AlexNet + Ad-MSR to DSCMR, it can be seen that the stacking

of convolutional layers and the use of residual units are effective.

The fact that the performance of ResNet-18 is better than that of

AlexNet also illustrates that. The idea of the local convolution is

applied to the DSCMR network. A local convolution component

can capture local appearance changes, forcing the weights in each

local patch to be updated independently. An identity addition

component is introduced along with a “skip connection” from the

input patch. That helps avoid vanishing gradient issues during

training the network. The final result shows that the performance
f L-DSCMR is good. The experimental result shows that some

ethods can extract valid information and have excellent per-

ormance in the verification set. However, the performance of

-DSCMR is the most significant. In all AUs, the proportion of

egative and positive samples of AU20 is the largest. Comparing

ith methods without Ad-MSR, DSCMR performance is good,

ecause Ad-MSR corrects not only this defect but it also the single

U recognition deviation. 

Finally, we performed the same experimental setting on the

K + database. Comparing with the EmotioNet database, the num-

er of samples is smaller on the database. From Table 5 , we can

ee that the proportion of negative and positive samples of each

U is not very large during the data acquisition process of CK +
elative to EmotionNet database. And each method performs well

n the final recognition of AU. It shows that the equalization of

he positive and negative samples has a significant influence in the

ecognition. So the proposed DSCMR have better performance on

he multi-label sample imbalance problem. The final results also

how that the performance of AlexNet + Ad-MSR is indeed better

han that of AlexNet because the noise is removed and the gen-

ralization ability is improved. The deep CNN is used to extract

igh-level features and spatial information, and the mechanism

f residual units is used to eliminate the problem of gradient

isappearance. So on most AU recognition, the performances of

esNet-18 are better than those of AlexNet.However, the AUs of

ables 4 and 5 have some differences in the experimental results

etween the two databases. For example, for AU4, the sample rate

n Emotion-Net is 81.06 and the CK + is 1.93. All indicators of F 1-

core on CK + are larger than Emotion-Net, which is caused by the

mbalance of samples. When Ad-MSR add in network’s loss func-

ions, the accuracy of recognition has been relatively improved. For

UC, the accuracy of the same network CK + is higher which not

ave Ad-MSR. For networks joining Ad-MSR, the accuracy of the
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Table 5 

The results come from the CK + database. [ Bold ] denotes the best performance. Bold denotes the second best performance. 

AU F 1-score (%) AUC (%) Train 

Samples N:P 

Test Samples 

N:P 

Validation 

Samples N:P 
DRML ResNet18 AlexNet DSCMR AlexNet 

+ Ad-MSR 

L-DSCMR DRML ResNet18 AlexNet DSCMR AlexNet 

+ Ad-MSR 

L-DSCMR 

1 50.00 64.15 34.09 54.23 45.56 [64.25] 49.99 49.85 4 9.4 8 49.87 50.00 [50.05] 2.16 2.93 2.54 

2 40.00 [70.96] 43.47 64.70 47.05 58.57 50.00 4 9.4 8 48.63 49.96 50.00 [50.53] 2.27 5.94 6.31 

4 [72.28] 42.85 52.63 61.11 54.32 69.13 49.99 45.67 45.58 [50.00] 48.94 49.98 1.93 2.57 2.16 

5 52.63 60.00 35.08 42.24 47.36 [66.67] 49.97 31.16 30.50 49.99 49.85 47.22 4.54 8.07 3.87 

6 57.78 60.00 54.54 [68.18] 57.14 62.22 [55.43] 27.52 45.80 53.16 49.80 55.04 2.98 5.94 5.88 

7 24.39 26.67 35.48 35.89 27.02 [47.05] 49.93 41.45 49.57 [50.00] 49.90 49.08 3.22 5.21 6.31 

9 [54.54] 36.36 21.27 53.84 35.29 51.53 31.37 28.80 20.87 49.98 49.94 [62.26] 5.12 12.11 15.71 

12 75.56 51.28 60.00 [80.00] 63.41 75.56 49.57 5.22 35.43 40.10 25.58 9.32 3.61 3.21 3.5 

15 57.14 24.00 53.52 [82.92] 61.53 71.42 [50.10] 30.61 27.43 50.02 49.92 [51.03] 6.10 4.61 4.08 

17 81.92 60.24 68.81 [89.74] 67.39 82.35 49.62 49.58 48.40 50.60 36.80 [54.56] 1.88 2.27 1.85 

20 58.06 21.05 48.80 83.87 66.67 [84.84] [49.97] 11.80 7.29 28.18 49.50 30.44 6.10 5.94 9.63 

23 41.67 15.00 31.11 [75.00] 50.09 73.26 [50.01] 32.94 42.27 49.87 49.71 43.06 9.44 10.8 6.315 

24 30.76 20.00 17.00 [36.36] 22.22 26.67 27.01 28.77 31.12 49.83 [50.03] 44.62 6.88 15.85 18.5 

25 76.42 79.33 78.94 85.49 77.06 [89.06] 49.71 [51.09] 51.06 50.00 41.23 49.98 1.29 1.80 2.06 
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wo databases is closed, which also indicates that the sample im-

alance is for identification. The accuracy rate has a great impact.

or AU25, the positive and negative sample rete is around to 1, so

he indicators are closed. 

. Conclusions 

AU recognition is a samples imbalance problem and also is

 multi-label learning problem. For the problem, we proposed a

ovel Multi-label Slope Rate (MSR) loss function and an Advanced-

SR (Ad-MSR) loss function in deep network architecture. In the

rchitecture, a local convolution and residual units are used. The

roposed two loss functions are evaluated on two expression

atabases. 
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