
An Adaptive Fuzzy k-Nearest Neighbor Method Based on
Parallel Particle Swarm Optimization for Bankruptcy

Prediction

Hui-Ling Chen, Da-You Liu, Bo Yang, Jie Liu, Gang Wang, and Su-jing Wang

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of EducationJilin
University, Changchun 130012, China

chenhuiling.jlu@gmail.com; {liudy⋆, ybo, liu jie}@jlu.edu.cn; wanggang.jlu@gmail.com;

wangsj08@mails.jlu.edu.cn

Abstract. This study proposes an efficient non-parametric classifier for bankruptcy pre-
diction using an adaptive fuzzy k -nearest neighbor (FKNN) method, where the nearest
neighbor k and the fuzzy strength parameter m are adaptively specified by the particle
swarm optimization (PSO) approach. In addition to performing the parameter optimiza-
tion for FKNN, PSO is utilized to choose the most discriminative subset of features for
prediction as well. Time varying acceleration coefficients (TVAC) and inertia weight (TVI-
W) are employed to efficiently control the local and global search ability of PSO. Moreover,
both the continuous and binary PSO are implemented in parallel on a multi-core platform.
The resultant bankruptcy prediction model, named PTVPSO-FKNN, is compared with
three classification methods on a real-world case. The obtained results clearly confirm the
superiority of the developed model as compared to the other three methods in terms of
Classification accuracy, Type I error, Type II error and AUC (area under the receiver op-
erating characteristic (ROC) curve) criterion. It is also observed that the PTVPSO-FKNN
is a powerful feature selection tool which has indentified a subset of best discriminative
features. Additionally, the proposed model has gained a great deal of efficiency in terms
of CPU time owing to the parallel implementation.

Keywords: Fuzzy k -nearest neighbor; Parallel computing; Particle swarm optimization;
Feature selection; Bankruptcy prediction

1 Introduction

Accurately identifying the potentially financial failure of companies remains a goal of many
stakeholders involved. Because there is no underlying economic theory of bankruptcy, searching
for more accurate bankruptcy prediction models remains the goal in the field of the bankruptcy
prediction. A fair amount of models has been developed for bankruptcy prediction. These models
have progressed from statistical methods to the artificial intelligence (AI) approach. A number
of statistical methods such as the simple univariate analysis, multivariate discriminant analysis
technique, logistic regression approach and factor analysis technique have been typically used
for financial applications including bankruptcy prediction. Recent studies in the AI approach,
such as artificial neural networks (ANN) , rough set theory , support vector machines (SVM)
, k -nearest neighbor method (KNN) and Bayesian network models have also been successfully
applied to bankruptcy prediction (see [1][2]). Among these techniques, ANN has become one of
the most popular techniques for the prediction of corporate bankruptcy due to its high prediction
accuracy. However, a major disadvantage of ANN lies in their knowledge representation. The
black box nature of ANN makes it difficult for humans to understand how the networks predict
the bankruptcy.

Compared with ANN, KNN is simple, easily interpretable and can achieve acceptable accu-
racy rate. Albeit these advantages, the standard KNN methods place equal weights on all the
selected neighbors regardless of their distances from the query point. In this way, once the class
has been assigned, there is no indication of the significance of membership to indicate how much
the instance belongs to a particular class. An improvement over the standard KNN classifier
is the Fuzzy k -nearest neighbor classifier (FKNN) [3], which uses concepts from fuzzy logic to
assign degree of membership to different classes while considering the distance of its k nearest
neighbors. The FKNN method has been frequently used for the classification of biological data,
image data and so on. Nevertheless, only few works have paid attention to using FKNN to clas-
sify the financial data. Bian et al. [4] used FKNN as a reference classifier in their experiments

⋆ Corresponding author

2 H.Chen et al.

in order to show the superiority of the proposed Fuzzy-rough KNN method, which incorporated
the rough set theory into FKNN to further improve the accuracy of bankruptcy prediction. How-
ever, they did not comprehensively investigate the nearest neighbors k and the fuzzy strength
parameter m, which play a significant role in improving the prediction power for FKNN. This
study aims to explore the full potential of FKNN by automatically determining k and m to
exploit the maximum classification accuracy for bankruptcy prediction.

Besides choosing a good learning algorithm, feature selection is also an important issue in
building the bankruptcy prediction models [5], which refers to choosing subset of attributes from
the set of original attributes. The purpose of the feature selection is to identify the significant
features, eliminate the irrelevant of dispensable features and build a good learning model. In
bankruptcy prediction, genetic algorithms (GA) are usually used to select a subset of input fea-
tures or to find appropriate hyper-parameter values of a predictor. Compared with GA, particle
swarm optimization (PSO) algorithm has no crossover and mutation operators, it is simple and
computationally inexpensive both in memory and runtime. In this work, we will focus on explor-
ing the PSO-based parameter optimization and feature selection approach. The continuous PSO
algorithm will be employed to evolve an adaptive FKNN, where the nearest neighbor k and the
fuzzy strength parameter m are adaptively specified. On the other hand, the binary PSO will
be used as a feature selection vehicle to identify the most informative features as well.

When dealing with the practical problems, the evolutionary-based methods such as the PSO
and GA will cost a lot of computational time. There is an urgent need to improve the perfor-
mance using high-performance computing techniques. For this reason, it is one of the major
purposes of this paper to use a parallel environment to speed up the search and optimization
process. Both the continuous and binary time variant PSO are implemented on a multi-core
platform using OpenMP (Open Multi-Processing) which is a portable, scalable model that gives
programmers a simple and flexible interface for developing parallel applications for platforms [6].
The efficacy of the proposed bankruptcy prediction model PTVPSO-FKNN is compared with
three reference classification methods on a real-world case. All these classifiers are compared with
respect to the classification accuracy, Type I error, Type II error and the AUC (area under the
receiver operating characteristic (ROC) curve) criterion. The experimental results demonstrate
that the proposed model can not only obtain the most appropriate parameters but also show
high discriminating power as a feature selection tool. Further comparison is also made between
the parallel model and serial model. Based on the experiments conducted, it is inferred that the
parallel model PTVPSO-FKNN can significantly reduce the computational time.

The rest of the paper is organized as follows. In Section 2, we give a brief description of the
fuzzy k -nearest neighbor method (FKNN) and particle swarm optimization algorithm (PSO).
Section 3 proposes our model, the simultaneous optimization of relevant parameters and feature
subset by the PSO approach in a parallel environment. In the next section, the detailed ex-
perimental design is presented, and Section 5 describes all the empirical results and discussion.
Finally, Conclusions are summarized in Section 6.

2 Background materials

2.1 Fuzzy k-Nearest Neighbor Algorithm (FKNN)

The k -nearest neighbor algorithm (KNN) is one of the oldest and simplest non parametric
pattern classification methods [7]. In the KNN algorithm a class is assigned according to the
most common class amongst its k nearest neighbors. In 1985, Keller proposed a fuzzy version
of KNN by incorporating the fuzzy set theory into the KNN algorithm, and named it as ”fuzzy
KNN classifier algorithm” (FKNN) [3]. According to his approach, rather than individual classes
as in KNN, the fuzzy memberships of samples are assigned to different categories according to
the following formulation:

ui(x) =

k∑
j=1

uij(1/||x− xj ||2/(m−1))

k∑
j=1

(1/||x− xj ||2/(m−1))

(1)

where i = 1, 2, · · · , c, and j = 1, 2, · · · , k, with c number of classes and k number of nearest
neighbors. The fuzzy strength parameter m is used to determine how heavily the distance is
weighted when calculating each neighbor’s contribution to the membership value, and its value
is usually chosen as m ∈ (1,+∞). ∥x− xj∥ is the Euclidean distance between x and its jth

An Adaptive Fuzzy k -Nearest Neighbor Method for bankruptcy prediction 3

nearest neighbor xj . And uij is the membership degree of the pattern xj from the training set
to the class i, among the k nearest neighbors of x. There are two ways to define uij , one way is
the crisp membership, i.e., each training pattern has complete membership in their known class
and non-memberships in all other classes. The other way is the constrained fuzzy membership,
i.e., the k nearest neighbors of each training pattern (say xk) are found, and the membership of
xk in each class is assigned as:

uij(xk) =

{
0.51 + (nj/K) ∗ 0.49, if j = i

(nj/K) ∗ 0.49, otherwise.
(2)

The value nj is the number of neighbors found which belong to the jth class. In our experiments,
we have found that the second way lead to better classification accuracy. After calculating all
the memberships for a query sample, it is assigned to the class with which it has the highest
membership value.

2.2 Time Variant Particle Swarm Optimization (TVPSO)

Particle swarm optimization (PSO) was first developed by Kennedy and Eberhart [8]. In PSO
each individual is treated as a particle in d -dimensional space, and each particle has a position
and velocity. The position vector of the ith particle is represented as Xi = (xi,1, xi,2, . . . , xi,d),
and its according velocity is represented as Vi = (vi,1, vi,2, . . . , vi,d). The velocity and position
are updated as follows:

vn+1
i,j = w × vni,j + c1 × r1(p

n
i,j − xn

i,j) + c2 × r2(p
n
g,j − xn

i,j) (3)

xn+1
i,j = xn

i,j + vn+1
i,j , j = 1, 2, · · · , d (4)

where vector Pi = (pi,1, pi,2, . . . , pi,d) represents the best previous position of the ith particle
that gives the best fitness value, which is known as the personal best position (pbest). Vector
Pg = (pg,1, pg,2, . . . , pg,d) is the best particle among all the particles in the population, which is
known as the global best position (gbest). r1 and r2 are random numbers, generated uniformly
in the range [0, 1]. The velocity vi,j is restricted to the range [−vmax, vmax]. Inertia weight w is
updated according to the following equation:

w = wmin + (wmax − wmin)
(tmax − t)

tmax
(5)

where wmax, wmin are the predefined maximum and minimum values of the inertia weight
w, t is the current iteration of the algorithm and tmax is the maximum number of iterations.
Eq. (5) is also known as Time varying inertia weight (TVIW), which will be incorporated to the
TVPSO. c1 and c2 are acceleration coefficients, to better balance the search space between the
global exploration and local exploitation, Time varying acceleration coefficients (TVAC) have
been introduced in [9]. This concept will be adopted in this study to ensure the better search for
the solutions. The core idea of TVAC is that c1 decreases from its initial value of c1i to c1f , while
c2 increases from c2i to c2f using the following equations as in [9]. TVAC can be mathematically
represented as follows:

c1 = (c1f − c1i)
t

tmax
+ c1i (6)

c2 = (c2f − c2i)
t

tmax
+ c2i (7)

where c1f , c1i, c2f and c2i are constants, t is the current iteration of the algorithm and tmax
is the maximum number of iterations. For the binary PSO, one discrete PSO version introduced
by Kennedy and Eberhart [10] was employed to act as the feature selection tool. In the binary
PSO, A sigmoid function is applied to transform the velocity from continuous space to probability
space:

sig(vi,j) =
1

1 + exp(−vi,j)
, j = 1, 2, . . . , d (8)

The velocity update Eq. (3) keeps unchanged except that xi,j , pi,j and pg,j ∈ {0, 1}, and in order
to ensure that bit can transfer between 1 and 0 with a positive probability, vmax was introduced
to limit vi,j . The new particle position is updated using the following rule:

4 H.Chen et al.

xn+1
ij =

{
1, if rnd < sig(vi,j)

0, if rnd ≥ sig(vi,j)
, j = 1, 2, · · · , d (9)

where sig(vi,j) is calculated according to Eq. (8), and rand is a uniform random number in
the range [0, 1].

3 Proposed PTVPSO-FKNN Prediction Model

In this section, we describe the proposed PTVPSO-FKNN model for bankruptcy prediction.
As mentioned in the Introduction, the aim of this model is to optimize the FKNN classifier by
automatically: 1) determining the nearest neighbor k and the fuzzy strength parameter m and 2)
identifying the subset of best discriminative features. In order to achieve this goal, the continuous
and binary time variant PSO are combined together to dynamically conduct the parameter
optimization and feature selection. The obtained appropriate feature subset can served as the
input into the FKNN classifier to conduct the classification task. Here, we first describe the
model based on the serial PSO algorithm, termed TVPSO-FKNN, and then implement it in
parallel.

3.1 TVPSO-FKNN Model Based on the Serial PSO Algorithm

The flowchart of the TVPSO-FKNN model for bankruptcy prediction was constructed through
the following main steps as shown in Fig. 1.

– Step 1: Encode the particle with n+2 dimensions. The first two dimensions are k and m
which are continuous values. The remaining n dimensions is Boolean features mask, which
is represented by discrete value, ’1’ indicates the feature is selected, and ’0’ represents the
feature is discarded.

– Step 2: Initialize the individuals of the population with random numbers. Meanwhile, spec-
ify the PSO parameters including the lower and upper bounds of the velocity, the size of
particles, the number of iterations, etc.

– Step 3: Train the FKNN with the selected feature vector in Step 2.

– Step 4: It is well known that higher the AUC value the better the classifier is said to be. And
the particle with high AUC value and the small number of selected features can produce a
high fitness value. Hence, we took both of them into consideration in designing the fitness
function, The fitness value was calculated according to the following objective function:

f1 = AUC

f2 = (1−
∑n

j=1 fti

n)

f = α× f1 + β × f2

(10)

where variable AUC in the first sub-objective function f1 represents the area under the
ROC curve achieved by the FKNN classifier via K-fold cross-validation (CV), here K=5.
Note that here the 5-fold CV is used to determine the optimal parameters (including k and
m) which is different from the outer loop of 10-fold CV, which is used to do the performance
estimation. In the second sub-objective function f2, fti is the value of feature mask (’1’
represents that feature is selected and ’0’ indicates that feature is discarded), n is the total
number of features. The weighted summation of the two sub-objective functions is selected
as the final sub-objective function. In the function f , variable α is the weight for FKNN
classification accuracy, β indicates the weight for the selected features. The weight can be
adjusted to a proper value depends on the importance of the sub-objective function. Because
the classification performance more depend on the classification accuracy, hence the α value
is set as much bigger than that of β. According to our preliminary experiments, the value
of α and β were taken as 0.85 and 0.15 respectively. After the fitness value was obtained,
the global optimal fitness was saved as gfit, personal optimal fitness as pfit, global optimal
particle as gbest and personal optimal particle as pbest.

– Step 5: Increase the number of iteration.

– Step 6: Increase the number of population. Update the position and velocity of k, m using
Eqs.(3-4) and the features using Eq.(3), Eqs.(8-9) in each particle.

An Adaptive Fuzzy k -Nearest Neighbor Method for bankruptcy prediction 5

– Step 7: Train the FKNN classifier with the feature vector obtained in Step 6 and calculate the
fitness value of each particle according to Eq. (10). Notice that PSO is used for optimization
tasks where the nearest neighbor k to be optimized is integer number. Hence, an extra step
is taken to round the encoded value k to the nearest integer number before the particle is
evaluated.

– Step 8: Update the personal optimal fitness (pfit) and personal optimal position (pbest) by
comparing the current fitness value with the pfit stored in the memory. If the current fitness
is dominated by the pfit stored in the memory, then keep the pfit and pbest in the memory;
otherwise, replace the pfit and pbest in the memory with the current fitness value and particle
position.

– Step 9: If the size of the population is reached, then go to Step 10. Otherwise, go to Step 6.
– Step 10: Update the global optimal fitness (gfit) and global optimal particle (gbest) by

comparing the gfit with the optimal pfit from the whole population, If the current optimal
pfit is dominated by the gfit stored in the memory, then keep the gfit and gbest in the
memory; otherwise, replace the gfit and gbest in the memory with the current optimal pfit
and the optimal pbest from the whole population.

– Step 11: If the stopping criteria are satisfied, then go to Step 12. Otherwise, go to Step
5. The termination criteria are that the iteration number reaches the maximum number of
iterations or the value of gfit does not improve after 100 consecutive iterations.

– Step 12: Get the optimal (k, m) and feature subset from the best particle (gbest).

3.2 Parallel Implementation of the TVPSO-FKNN Model on the Multi-Core
Platform (PTVPSO-FKNN)

In this section, we put forward a parallel implementation of TVPSO-FKNN model which is per-
formed on multi-core processor by using OpenMP. The architecture of the multi-core platform is
divided into three lays as shown in Fig. 2(a): 1) TVPSO-FKNN: It consists of a number of parti-
cles, which can supply computing requirements. The parallel algorithm controls the iterations of
particles and each particle is calculated separately. 2) OpenMP: It guarantees to implement par-
allel synchronization and establish the communications with operating system (OS). The main
part of OpenMP is scheduler, which provides the system with job scheduling and allocation. 3)
Multi-core processor: The job is dispatched by OpenMP via OS.

The pseudo-code of the parallel TVPSO-FKNN is summarized in Algorithm 1.

Algorithm 1 PTVPSOFKNN

Initialize system parameters.
Train FKNN model.
//current number of iteration (cni), maximum number of iteration (mni)
while cni < mni do

for each particle do
Update position.
Update velocity.
Train FKNN model.
Calculate fitness.
Calculate pfit. // personal optimal fitness (pfit)
Calculate pbest. // personal optimal position (pbest)

end for
Calculate gfit. // global optimal fitness (gfit)
Calculate gbest. // global optimal particle (gbest)
cni =cni + 1.

end while

4 Experimental Design

4.1 Data Description

The financial data used for this study was taken from Wieslaw [11] dataset which contains 30
financial ratios and 240 cases in total (112 from bankrupt Polish companies and 128 from non-
bankrupt ones between 1997 and 2001). All the observations cover the period spanning 2 to 5

6 H.Chen et al.

E
n
c
o
d
e
k

,
 m

a
n
d

f
e
a
t
u
r
e
s
 k
 m
 0

o
r

1
 .
.
.

C
r
e
a
t
e

i
n
i
t
i
a
l

p
a
r
t
i
c
l
e

w
i
t
h

f
e
a
s
i
b
l
e

r
a
n
d
o
m

n
u
m
b
e
r
s

k
1
 m
1
 0

o
r

1
 .
.
.

k
n
 m
n
 0

o
r

1
 .
.
.

T
r
a
i
n

F
K
N
N

m
o
d
e
l

U
s
e
 k

,
m

a
n
d

t
h
e

f
e
a
t
u
r
e
s

w
h
o
s
e

v
a
l
u
e
s

a
r
e

'
1
'

i
n

e
a
c
h

p
a
r
t
i
c
l
e

C
a
l
c
u
l
a
t
e

t
h
e

f
i
t
n
e
s
s

v
a
l
u
e

S
t
e
p

1

S
t
e
p

7

S
t
e
p

5

S
t
e
p

4

S
t
e
p

3

S
t
e
p

2

s
a
v
e

t
h
e

o
p
t
i
m
a
l

g
l
o
b
a
l

f
i
t
n
e
s
s

a
s
g
f
i
t
,

t
h
e

o
p
t
i
m
a
l

p
e
r
s
o
n
a
l

f
i
t
n
e
s
s

a
s
p
f
i
t
,

g
l
o
b
a
l

o
p
t
i
m
a
l

p
a
r
t
i
c
l
e

a
s
g
b
e
s
t
 a
n
d

p
e
r
s
o
n
a
l

o
p
t
i
m
a
l

p
o
s
i
t
i
o
n

a
s
p
b
e
s
t

U
p
d
a
t
e

t
h
e

p
o
s
i
t
i
o
n

a
n
d

v
e
l
o
c
i
t
y

o
f

e
a
c
h

p
a
r
t
i
c
l
e

A
c
c
o
r
d
i
n
g

t
o

E
q
s
.

(
3
)

a
n
d

(
4
)

f
o
r

p
a
r
a
m
e
t
e
r

o
p
t
i
m
i
z
a
t
i
o
n
,

E
q
s
.

(
3
)
,

(
8
)

a
n
d

(
9
)

f
o
r

f
e
a
t
u
r
e

s
e
l
e
c
t
i
o
n

T
r
a
i
n

F
K
N
N

m
o
d
e
l

a
n
d

c
a
l
c
u
l
a
t
e

t
h
e

f
i
t
n
e
s
s

v
a
l
u
e

T
r
a
i
n

b
y

u
s
i
n
g

t
h
e

s
e
l
e
c
t
e
d

f
e
a
t
u
r
e

s
u
b
s
e
t

i
n

S
t
e
p

6
,

c
a
l
c
u
l
a
t
i
o
n

o
f

f
i
t
n
e
s
s

v
a
l
u
e

a
c
c
o
r
d
i
n
g

t
o

E
q
.

(
1
0
)

C
o
m
p
a
r
e

t
h
e

c
u
r
r
e
n
t

f
i
t
n
e
s
s

v
a
l
u
e

w
i
t
h

t
h
e
p
f
i
t

s
t
o
r
e
d

i
n

t
h
e

m
e
m
o
r
y

U
p
d
a
t
e

t
h
e

p
e
r
s
o
n
a
l

o
p
t
i
m
a
l

f
i
t
n
e
s
s

(
p
f
i
t
)

a
n
d

p
e
r
s
o
n
a
l

o
p
t
i
m
a
l

p
o
s
i
t
i
o
n

(
p
b
e
s
t
)

S
t
e
p

8

U
p
d
a
t
e

t
h
e

g
l
o
b
a
l

o
p
t
i
m
a
l

f
i
t
n
e
s
s

(
g
f
i
t
)

a
n
d

g
l
o
b
a
l

o
p
t
i
m
a
l

p
a
r
t
i
c
l
e

(
g
b
e
s
t
)

C
o
m
p
a
r
e

t
h
e
g
f
i
t

w
i
t
h

t
h
e

o
p
t
i
m
a
l

p
f
i
t

f
r
o
m

t
h
e

w
h
o
l
e

p
o
p
u
l
a
t
i
o
n

R
e
a
c
h
e
d

s
i
z
e

o
f

p
o
p
u
l
a
t
i
o
n
?

R
e
a
c
h
e
d

s
t
o
p
p
i
n
g

c
r
i
t
e
r
i
a
?

S
t
e
p

9

S
t
e
p

1
1

S
t
e
p

1
0

C
o
n
t
i
n
u
e

u
n
t
i
l

t
h
e

p
o
p
u
l
a
t
i
o
n

s
i
z
e

C
o
n
t
i
n
u
e

u
n
t
i
l

t
h
e

i
t
e
r
a
t
i
o
n

s
i
z
e

P
a
r
a
m
e
t
e
r

O
p
t
i
m
i
z
a
t
i
o
n

a
n
d

F
e
a
t
u
r
e

S
e
l
e
c
t
i
o
n

b
y

T
V
P
S
O

a
l
g
o
r
i
t
h
m

Y
e
s

N
o

Y
e
s

N
o

n
P

1
P

G
e
t

t
h
e

o
p
t
i
m
a
l
k
,
m

a
n
d

t
h
e

o
p
t
i
m
a
l

f
e
a
t
u
r
e

s
u
b
s
e
t

f
r
o
m

g
b
e
s
t

.
.
.

C
a
l
c
u
a
l
a
t
e

t
h
e

a
v
e
r
a
g
e

a
c
c
u
r
a
c
y

r
a
t
e

T
r
a
i
n

F
K
N
N

w
i
t
h

t
h
e

b
e
s
t

(
k
,
 m

)

a
n
d

t
h
e

o
p
t
i
m
a
l

f
e
a
t
u
r
e

s
u
b
s
e
t

a
s

t
h
e

i
n
p
u
t

o
n

t
h
e
K
-
1

t
r
a
i
n
i
n
g

s
u
b
s
e
t

P
r
e
d
i
c
t

t
h
e

l
a
b
e
l
s

i
n

t
h
e

r
e
s
t

1

t
e
s
t

s
u
b
s
e
t

w
i
t
h

s
e
l
e
c
t
e
d

f
e
a
t
u
r
e
s

K
-
f
o
l
d

c
r
o
s
s
-

v
a
l
i
d
a
t
i
o
n

t
e
r
m
i
n
a
t
i
o
n

?

Y
e
s

N
o

T
e
s
t
i
n
g

s
t
a
g
e
I
n
c
r
e
a
s
e

t
h
e

n
u
m
b
e
r

o
f

i
t
e
r
a
t
i
o
n
s
 S
e
t
i

=

i

+
1

S
t
e
p

1
2

S
e
t
K

=
K

+
1

S
t
e
p

6

Fig. 1. Overall procedure of the TVPSO-FKNN model

An Adaptive Fuzzy k -Nearest Neighbor Method for bankruptcy prediction 7

TVPSO-FKNN

OpenMP

Multi-core processor

Core 1

Core 2

Core 3

Core 4

Particles

Scheduler

(a)

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

Bankruptcy companies
Non−bankruptcy companies

(b)

Fig. 2. (a)The architecture of parallel running environment of TVPSO-FKNN. (b)Two-dimensional
distribution of the two classes (bankrupt and non-bankrupt) in the subspace formed by the best couple
of features obtained with the PCA algorithm.

years before bankruptcy toke place. It should be noted that the size of the data set is not that
large compared to the majority of bankruptcy prediction studies. However, according to [12],
the dataset is reliable since increasing the dataset length does not lead to the accuracy increase.
Fig. 2(b) illustrates the distribution of the two classes of 240 samples in the subspace formed
by the two best features according to the principal component analysis (PCA) algorithm. As
shown in this figure, there is apparently strong overlap between the bankrupt companies and
non-bankrupt ones.

Data was normalized by scaling them into the interval of [−1, 1]. In order to gain an unbiased
estimate of the generalization accuracy, the k -fold CV presented by Salzberg [13] was used to
evaluate the classification accuracy. This study set k as 10, i.e., the data was divided into ten
subsets. Each time, one of the 10 subsets is used as the test set and the other 9 subsets are put
together to form a training set. Then the average error across all 10 trials is computed. The
advantage of this method is that all of the test sets are independent and the reliability of the
results could be improved.

4.2 Experimental Setup

The proposed PTVPSO-FKNN model was implemented using Visual C++ 2008 and OpenMP.
For SVM, LIBSVM implementation is utilized, which was originally developed by Chang and
Lin [14]. We implemented the PSO algorithm, FKNN and KNN from scratch. The MLP was
created, trained and implemented using Matlab neural network toolbox with BP and the training
algorithm of Levenberg-Marquardt. The computer is Intel Quad-Core Xeon 2.0 GHz CPU; 4 GB
RAM and the system is Windows Server 2003.

The detail parameter setting for PTVPSO-FKNN was set as follows. The number of the
iterations and particles was set to 250 and 8, respectively. The searching ranges for k and m are
as follows: k ∈ [1, 100] and m ∈ [1, 10]. vmax was set about 60% of the dynamic range of the
variable on each dimension for the continuous type of dimensions. Therefore, [−vmax, vmax] was
predefined as [0.6, 60] for parameter k, and as [0.6, 6] for parameter m. For the discrete type
particle for feature selection, [−vmax, vmax] was set as [−6, 6]. As suggested in [9],c1i,c1f ,c2i and
c2f were set as follows: c1i = 2.5,c1f = 0.5,c2i = 0.5,c2f = 2.5. According to our preliminary
experiment, wmax and wmin were set to 0.9 and 0.4, respectively.

For SVM, we considered the nonlinear SVM based on the popular Gaussian (RBF) kernel,
and a grid-search technique [15] was employed using 10-fold CV to find out the optimal parameter
values of RBF kernel function. The range of the related parameters C and γ were varied between
C = {2−5, 2−3, . . . , 215} and γ = {2−15, 2−13, . . . , 21}. For KNN, we found the best result was
achieved when k = 1 by using 10-fold CV. Therefore, we selected k = 1 for the subsequent
analysis. Concerning MLP, we used the three layer back-propagation network to train ANN. We
tried different settings of the number of nodes in the hidden layers (5, 10, 15, 20, 25 and 30) and
the different learning epochs (50, 100, 200 and 300) as the stopping criteria for training. The
best result was obtained with the hidden layer of 15 and the learning epoch of 200.

8 H.Chen et al.

4.3 Measure for Performance Evaluation

Type I error, Type II error, total classification accuracy (ACC) and the area under the Receiver
Operating Characteristic curve (AUC) [16] were used to test the performance of the proposed
PTVPSO-FKNN model. They were the most widely used measures to assess the performance
of bankruptcy prediction systems [1]. Type I and Type II errors were two important measures
which described how well the classifier discriminates between case with non-bankruptcy and
with bankruptcy. Type I error measures the proportion of bankrupt cases which are incorrectly
identified as non-bankrupt ones. Type II error measures the proportion of non-bankrupt cases
which are incorrectly identified as bankrupt ones. The receiver operating characteristic (ROC)
curve is a graphical display that gives the measure of the predictive accuracy of a logistic model
[16]. The curve displays the true positive rate and false positive rate. AUC is the area under the
ROC curve, which is one of the best methods for comparing classifiers in two-class problems.

5 Experimental Results and Discussion

5.1 Experiment I: Classification in the Whole Original Feature Space

As mentioned earlier, in this experiment we evaluated the effectiveness of the proposed model
on the entire feature space with 30 features (financial ratios). In order to verify the effective-
ness of the proposed model, TVPSO-FKNN was compared with three other reference classifiers
(SVM, KNN and ANN). Table 1 shows the results achieved with all four investigated classifiers
(PTVPSO-FKNN, SVM, KNN and ANN) for the financial data with the form of ’average ±
standard deviation’. It is well known that higher the AUC value the better the classifier is said
to be. Accordingly, the classifiers are arranged in the descending order of AUC in the table. As
clearly indicated in the table, PTVPSO-FKNN outperforms all other methods with the classifi-
cation accuracy of 81.67%, Type I error of 17.58%, Type II error of 19.04% and AUC of 81.69%.
MLP is next to PTVPSO-FKNN with classification accuracy of 77.92%, Type I error of 20.84%,
Type II error of 21.46% and AUC of 78.71%, followed by KNN and SVM. The superiority of
the PTVPSO-FKNN is statistically significant as shown by the paired t-test in Tables (2-3),
where the significant level is 5%. The results are interesting and exciting, it suggests that the
FKNN approach can become a promising alternative bankruptcy prediction tool in financial
decision-making, where SVM and ANN are known to be the best models [2].

Table 1. The ACC, Type I and Type II errors and AUC achieved with different classifiers

Classifiers ACC (%) Type I error (%) Type II error (%) AUC (%)

PTVPSO-FKNN 81.67±2.15 17.58±0.78 19.04±3.96 81.69±2.04
SVM 76.67±4.65 18.96±8.46 26.55±7.93 77.26±5.62
KNN 78.75±3.65 21.46±5.07 21.39±4.13 78.57±3.78
MLP 77.92±5.22 20.84±7.21 21.46±9.84 78.71±6.48

Table 2. Paired t-test results of Type I and Type II error

Type I error / Type II error TVPSO-FKNN t-value (significance)

MLP -2.243(0.037)/-2.589(0.047)
KNN -2.332(0.045)/-2.366(0.042)
SVM -3.045(0.026)/-3.122(0.032)

Negative values indicate that the ith classifier has a Type I error /Type II error
higher than that of the jth one.

The better performance of the proposed model can be explained by the fact that the TVPSO
has aided the FKNN classifier to achieve the maximum classification performance by automati-
cally detecting the optimal nearest neighbor k and the fuzzy strength parameter m. The detailed
values of parameters k and m via 10-fold CV using the proposed model is shown in Table 4. From

An Adaptive Fuzzy k -Nearest Neighbor Method for bankruptcy prediction 9

Table 3. Paired t-test results of ACC and AUC

ACC / AUC TVPSO-FKNN t-value (significance)

MLP -3.345(0.017)/-3.623(0.021)
KNN -3.280(0.009)/-3.168(0.011)
SVM -4.458(0.005)/-4.854(0.023)

Negative values indicate that the ith classifier has an AC-
C/AUC lower than that of the jth one.

Table 4. The detailed parameter values obtained through 10-fold CV

Fold #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

k 23 33 55 14 1 25 86 43 22 15
m 1.27 1.33 1.39 1.35 1.29 1.34 1.67 1.45 1.32 3.00

the table, it can be observed that the values of k and m are different for each fold of the data.
And according to our preliminary experiment, they can be varied automatically when perform
another run of 10-fold CV. The explanation lies in the fact that the two parameters are evolved
together by the TVPSO algorithm according to the specific distribution of the training data
at hand. It indicates that the optimal values of k and m can always be adaptively specified by
TVPSO during each run of the experiment. Moreover, it is interesting to see that the standard
deviation for the acquired performance by the PTVPSO-FKNN is much smaller than that of the
other three classifiers, which indicates consistency and stability of the proposed model.

5.2 Experiment II: Classification Using the PTVPSO-FKNN Model with Feature
Selection

As described earlier, the proposed PTVPSO-FKNN model aimed at enhancing the FKNN clas-
sification process by not only dealing with the parameters optimization but also automatically
identifying the subset of the most discriminative features. In this experiment, we attempt to
explore the capability of the PTVPSO-FKNN to further boost the performance of the FKN-
N classifier by using the TVPSO. Table 5 lists the best results of PTVPSO-FKNN with and
without feature selection for Wieslaw dataset. As shown in this table, results obtained using
PTVPSO-FKNN with feature selection significantly outperforms PTVPSO-FKNN without fea-
ture selection in terms of the Type I error, Type II error, AUC and classification accuracy at the
statistical significance level of 5%. By using feature selection, the classification accuracy, AUC
values, Type I error and Type II error have been improved by 2.5%, 2.55%, 1.71% and 3.38%
on average, respectively.

Table 5. Experimental results of the PTVPSO-FKNN with and without feature selection(%)

Performance metric PTVPSO-FKNN with-
out feature selection

PTVPSO-FKNN with feature selection Paired t−test
p-value

Type I error 17.58±0.78 15.87±2.42 0.0429
Type II error 19.04±3.96 15.66±1.94 0.0202
AUC 81.69±2.04 84.24±1.75 0.0029
ACC 81.67±2.15 84.17±1.76 0.0051

To explore how many features and what features are selected during the PSO feature selection
procedure, we further conducted an experiment on the Wieslaw dataset to investigate the detail
of the feature selection mechanism of the PSO algorithm. The original numbers of features
of the dataset is 30. As shown in Table 6, not all features are selected for classification after
the feature selection. Furthermore, feature selection has increased the classification accuracy, as
demonstrated in Table 5. The average number of selected features by PTVPSO-FKNN is 15.3,
and its most important features are X1, X2, X4, X5, X7, X9, X16, X18, X20, X23, X25 and X27,
which can be found in the frequency of the selected features of 10-fold CV as shown in Fig. 3(a).

10 H.Chen et al.

It should be noticed that important features (financial ratios) selected by the proposed model are
indeed important from the knowledge perspective also as they are related to current liabilities
and long term liabilities, current assets, shareholders’ equity and cash, sales, inventory, working
capital, net profit, receivables, liabilities, total assets.

Table 6. The subset of features selected by PTVPSO-FKNN via 10-fold CV

Fold Selected features

#1 X2 X4 X5 X7 X10 X11 X12 X15 X20 X22 X23 X26 X27

#2 X1 X3 X4 X6 X7 X8 X11 X13 X15 X16 X17 X18 X19 X20 X23

X25 X30

#3 X1 X2 X4 X6 X7 X9 X13 X16 X20 X22 X23 X24 X25 X27

#4 X1 X2 X3 X4 X5 X9 X10 X12 X13 X15 X17 X18 X20 X22 X23

X24 X25 X29

#5 X1 X2 X3 X6 X7 X8 X9 X10 X11 X12 X15 X18 X19 X20 X23 X25

X27 X28 X29 X30

#6 X5 X7 X9 X14 X17 X18 X19 X21 X23 X24 X25 X27 X30

#7 X2X4 X5 X7 X8 X12 X13 X16 X17 X18 X21 X23 X25 X29 X30

#8 X1 X2 X3 X4 X5 X7 X8 X16 X19 X20 X25 X27 X29

#9 X1 X5 X9 X12 X16 X18 X20 X23 X24 X25 X26 X28

#10 X1 X2 X5 X8 X9 X10 X11 X14 X15 X16 X17 X18 X21 X23 X25

X27 X28 X30

0

2

4

6

8

10

F
re

q
u

en
cy

X 1 X 5 X 9 X 13 X 17 X 21 X 25 X 29

(a)

0 20 40 60 80 100 120 140
0.862

0.864

0.866

0.868

0.87

0.872

0.874

0.876

0.878

0.88

0.882

Number of iterations

B
es

t
F

it
n

es
s

(b)

Fig. 3. (a) The frequency of the selected features in 10-fold CV on Wieslaw dataset. (b) The best fitness
during the training stage for fold #1.

To observe the evolutionary process in PTVPSO-FKNN, Fig. 3(b) shows the evolution of the
best fitness for fold 1# during 10-fold CV. The evolutionary processes are quite interesting. It
can be observed that the fitness curves gradually improved from iteration 1 to 130 and exhibited
no significant improvements after iteration 22, eventually stopped at the iteration 130 where
the particles reached the stopping criterion(100 successively same gbest values). The fitness
increase rapidly in the beginning of the evolution, after certain number of generations, it starts
increasing slowly. During the latter part of the evolution, the fitness keeps stability until the
stopping criterion is satisfied. It demonstrates that PTVPSO-FKNN can converge quickly toward
the global optima, and fine tune the solutions very efficiently. The phenomenon illustrates the
effectiveness of PTVPSO-FKNN in simultaneously evolving the parameters (k and m) and the
features through using TVPSO algorithm.

5.3 Experiment III: Comparison between the Parallel TVPSO-FKNN Model and
the Serial one

In order to reduce further the running time of the serial TVPSO-FKNN model, we implemented
the TVPSO-FKNN model on a multi-core platform. To validate the efficiency of the parallel
version, here we attempted to compare the performance of the PTVPSO-FKNN with that of
TVPSO-FKNN. Table 7 reported the best results of Type I error, Type II error, ACC, AUC and

An Adaptive Fuzzy k -Nearest Neighbor Method for bankruptcy prediction 11

the average computational time in seconds using the two models. It can be seen that PTVPSO-
FKNN and TVPSO-FKNN give almost the same results, the minor different results between two
models may be attributed to different partitions of the data are chosen when perform different
runs of 10-fold CV. Thus, it verifies the correctness of the parallel design and implementation.
However, the training time for the TVPSO-FKNN was 3.3 times that of the PTVPSO-FKNN,
which indicates that the TVPSO-FKNN has benefited a great deal from the parallel implemen-
tation with respect to the computational time. Additionally, it should be noted that only a
quad-core processor was used in this experiment, thus the computational time will be further
reduced with increase of the cores.

Table 7. The performance comparison of PTVPSO-FKNN with TVPSO-FKNN

Performance metric PTVPSO-FKNN TVPSO-FKNN

Type I error (%) 15.87±2.42 15.53±2.56
Type II error (%) 15.66±1.94 15.95±1.87
AUC (%) 84.24±1.75 84.26±1.98
ACC (%) 84.17±1.76 84.20±1.55
CPU Time (s) 1150.46±23.34 3796.51±30.45

6 Conclusions

This study provides an attractive model PTVPSO-FKNN for bankruptcy prediction. The main
novelty of this model is in the proposed TVPSO-based approach, which aims at aiding the FKNN
classifier to achieve the maximum classification performance. On the one hand, the continuous
TVPSO is employed to adaptively specify the two important parameters k and m of the FKNN
classifier. On the other hand, the binary TVPSO is adopted to identify the most discriminative
features. Moreover, both the continuous and binary TVPSO are implemented in a parallel envi-
ronment to reduce further the computational time. The experimental results demonstrate that
the developed model performs significantly better than the other three state-of-the-art classifiers
(KNN, SVM and MLP) in financial application field in terms of the Type I error, Type II error,
ACC and AUC on a real life dataset. Moreover, the experiment reveals that the PTVPSO-FKNN
is also a powerful feature selection tool which has detected a subset of best discriminative finan-
cial ratios that are really important from the knowledge perspective. Furthermore, the proposed
model computes rather efficiently owing to the high performance computing technology.

Hence, it can be safely concluded that, the developed PTVPSO-FKNN model can serve as a
promising alternative early warning system in financial decision-making. Meanwhile, we should
note that the proposed model does perform efficiently on the data at hand; however, it is not
obvious that the parallel algorithm will lead to significant improvement when applying to the
financial data with larger instances. Future investigation will pay much attention to evaluating
the proposed model in the larger dataset.

Acknowledgments. This research is supported by the National Natural Science Foundation
of China (NSFC) under Grant Nos. 60873149, 60973088, 60773099 and the National High-Tech
Research and Development Plan of China under Grant Nos. 2006AA10Z245, 2006AA10A309.
This work is also supported by the Open Projects of Shanghai Key Laboratory of Intelligent
Information Processing in Fudan University under the Grand No. IIPL-09-007, the Open Project
Program of the National Laboratory of Pattern Recognition (NLPR) and the basic scientific
research fund of Chinese Ministry of Education.

References

1. Verikas, A., Kalsyte, Z., Bacauskiene, M., Gelzinis, A.: Hybrid and ensemble-based soft computing
techniques in bankruptcy prediction: A survey. Soft Computing-A Fusion of Foundations, Method-
ologies and Applications 14(9) (2010) 995–1010

2. Ravi Kumar, P., Ravi, V.: Bankruptcy prediction in banks and firms via statistical and intelligent
techniques-a review. European Journal of Operational Research 180(1) (2007) 1–28

3. Keller, J.: A Fuzzy k-Nearest Neighbor Algorithm. IEEE Transactions on Systems, Man, and
Cybernetics 15(4) (1985) 580–585

12 H.Chen et al.

4. Bian, H., Mazlack, L.: Fuzzy-rough nearest-neighbor classification approach. In: Fuzzy Information
Processing Society, 2003. NAFIPS 2003. 22nd International Conference of the North American,
IEEE (2003) 500–505

5. du Jardin, P.: Predicting bankruptcy using neural networks and other classification methods: The
influence of variable selection techniques on model accuracy. Neurocomputing 73(10-12) (2010)
2047–2060

6. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: portable shared memory parallel pro-
gramming. The MIT Press (2008)

7. Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1)
(1967) 21–27

8. Kennedy, J., Eberhart, R., et al.: Particle swarm optimization. In: Proceedings of IEEE international
conference on neural networks. Volume 4., Perth, Australia (1995) 1942–1948

9. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing hierarchical particle swarm optimizer
with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation 8(3)
(2004) 240–255

10. Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm optimization. In: Proc.
Conf. Systems, Man, and Cybernetics. (1997) 4104–4108

11. Wieslaw, P.: Application of discrete predicting structures in an early warning expert system for
financial distress. PhD thesis, Ph. D. Thesis. Szczecin: Szczecin Technical University (2004)

12. Pietruszkiewicz, W.: Dynamical systems and nonlinear Kalman filtering applied in classification.
In: 7th IEEE International Conference on Cybernetic Intelligent Systems, 2008. CIS 2008., IEEE
(2008) 1–6

13. Salzberg, S.: On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining
and Knowledge Discovery 1(3) (1997) 317–328

14. Chang, C., Lin, C.: LIBSVM: a library for support vector machines, 2001. Software available at
http://www. csie. ntu. edu. tw/cjlin/libsvm (2001)

15. Chang, C., Lin, C., Hsu, C.: A practical guide to support vector classification. Department of
Computer Science and Information Engineering, National Taiwan University, Taiwan (2003)

16. Fawcett, T.: An introduction to ROC analysis. Pattern recognition letters 27(8) (2006) 861–874

