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Abstract

Tensor subspace transformation, a commonly used subspace transformation technique, has gained more
and more popularity over the past few years because many objects in the real world can be naturally
represented as multidimensional arrays, i.e. tensors. For example, a RGB facial image can be represented
as a three-dimensional array (or 3rd-order tensor). The first two dimensionalities (or modes) represent
the facial spatial information and the third dimensionality (or mode) represents the color space informa-
tion. Each mode of the tensor may express a different semantic meaning. Thus different transformation
strategies should be applied to different modes of the tensor according to their semantic meanings to
obtain the best performance. To the best of our knowledge, there are no existing tensor subspace trans-
formation algorithm which implements different transformation strategies on different modes of a tensor
accordingly. In this paper, we propose a fusion tensor subspace transformation framework, a novel idea
where different transformation strategies are implemented on separate modes of a tensor. Under the
framework, we propose the Fusion Tensor Color Space (FTCS) model for face recognition.

Introduction

Subspace transformation (or subspace analysis [1]), a main type of feature extraction, has gained huge
popularity over the past few years. Principal Component Analysis (PCA) [2] seeks the optimal projection
directions according to maximal variances. Linear Discriminant Analysis (LDA) [3] uses discriminant
information to search for the directions which are most effective for discrimination by maximizing the
ratio between the between-class and within-class scatters. Both PCA and LDA aim to preserve global
structures of the samples. Locality Preserving Projections (LPP) [4] aims to preserve the local structure
of the original space in the projective subspace. Discriminant Locality Preserving Projections (DLPP) [5]
encodes discriminant information into LPP to further improve the discriminant performance of LPP for
face recognition. These algorithms need to vectorize the objects (samples).

In the real world, however, many objects are naturally represented by multidimensional arrays, i.e.,
tensors, such as a color facial image used in face recognition (see Fig. 1). If these objects are vectorized,
their natural structure information will be lost [6]. As such, a great deal of interests are aroused in
the field of tensor [7] [8] [9] [10] [11]. Among the subspace transformation techniques, tensor subspace
transformation has also become a highly discussed topic. Multilinear Principal Component Analysis
(MPCA) [12], a tensor version of PCA, applies PCA transformation on each mode (or dimensionality)
of tensors. Similarly, Discriminant Analysis with Tensor Representation (DATER) [13], General Tensor
Discriminant Analysis (GTDA) [14], Tensor Subspace Analysis (TSA) [15], and Discriminant Tensor
Subspace Analysis (DTSA) [16] apply LDA, Maximum Scatter Difference (MSD) [17], LPP, and DLPP
to transform each mode of tensors, respectively. These tensor subspace transformation methods use a
certain vector subspace transformation method to transform every modes of tensors.

However, each mode of tensors may express a different semantic meaning. For example, a color facial
image can be treated as a 3rd-order tensor, where mode-1 and mode-2 represent the facial spatial infor-
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Figure 1. the tensorial represents of a color facial image.
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mation and mode-3 representing the color space information (see Fig. 1). The facial spatial information
and color space information are two different types of information, which should be handled by two dif-
ferent transformations to obtain better performance. In other words, for color facial images, we should
implement a transformation strategy on the first two modes and another transformation strategy on the
third mode. As such, each type of information should implement a transformation strategy best suited
for the semantic meaning.

To the best of our knowledge, there are no existing tensor subspace transformation algorithm, which
implements different transformation strategies on different modes of tensors according to their semantic
meanings. To address this problem, we propose the fusion tensor subspace transformation framework,
which shows an novel idea that different transformation strategies can be implemented on different modes
of tensors. Under the framework, we propose the Fusion Tensor Color Space (FTCS) model for face
recognition.

Materials and Methods

Tensor Fundamentals and Denotations

A tensor is a multidimensional array. It is the higher-order generalization of scaler (zero-order tensor),
vector (1st-order tensor), and matrix (2nd-order tensor). In this paper, lowercase italic letters (a, b, ...)
denote scalars, bold lowercase letters (a, b, ...) denote vectors, bold uppercase letters (A, B, ...) denote
matrices, and calligraphic uppercase letters (A, B, ...) denote tensors. The formal definition is given
below [18]:

Definition 1 The order of a tensor A ∈ RI1×I2×...×IN is N . An element of A is denoted by Ai1i2...iN

or ai1i2...iN , where 1 ≤ in ≤ In, n = 1, 2, . . . , N .

Definition 2 The mode-n vectors of A are the In-dimensional vectors obtained from A by fixing every
index but index in.

Definition 3 The mode-n unfolding matrix of A, denoted by (A)(n) ∈ RIn×(I1...In−1In+1...×IN ), contains
the element ai1...iN at inth row and at jth column, where

j = 1 +
N∑

k=1,k ̸=n

(ik − 1)Jk, with Jk =
k−1∏

m=1,m ̸=n

Im. (1)

We can generalize the product of two matrices to the product of a tensor and a matrix.

Definition 4 The mode-n product of a tensor A ∈ RI1×I2×...×IN by a matrix U ∈ RJn×In , denoted by
A×n U, is an (I1 × I2 × . . .× In−1 × Jn × In+1 × . . .× IN )-tensor of which the entries are given by:

(A×n U)i1i2...in−1jnin+1...iN
def
=

∑
in

ai1i2...in−1inin+1...iNujnin . (2)

Definition 5 The scalar product of two tensors A,B ∈ RI1×I2×...×IN , denoted by ⟨A,B⟩, is defined in

a straightforward way as ⟨A,B⟩ def
=

∑
i1

∑
i2
. . .

∑
iN

ai1i2...ıN bi1i2...ıN . The Frobenius norm of a tensor

A ∈ RI1×I2×...×IN is then defined as ∥A∥F
def
=

√
⟨A,A⟩

From the definition of the mode-n unfolding matrix, we have

∥A∥F = ∥(A)(n)∥F (3)
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By using tensor decomposition, any tensor A can be expressed as the product

A = C ×1 U1 ×2 U2 . . .×N UN (4)

where Un, n = 1, 2, . . . , N , is an orthonormal matrix and contains the ordered principal components for
the nth mode. C is called the core tensor. Unfolding the above equation, we have

A(n) = UnC(n)(UN ⊗ . . .⊗Un+1 ⊗Un−1 ⊗ . . .⊗U1)
T (5)

where operator ⊗ is the Kronecker product of the matrices.

The Connection among PCA, 2D-PCA and MPCA

Before introducing the fusion tensor subspace transformation framework, we firstly investigate the con-
nection among PCA, 2D-PCA [19] and MPCA. From the previous section, we know that a tensor is the
higher-order generalization of scaler, vector and matrix. Similarly, MPCA is the higher-order generaliza-
tion of PCA and 2D-PCA.

Suppose there are M N -order tensors Xi ∈ RI1×I2×...×IN , i = 1, 2, . . . ,M . MPCA seeks N projection
matrices U1 ∈ RI1×L1 , U2 ∈ RI2×L2 ,. . ., UN ∈ RIN×LN in order to transform Xi as

Yi = Xi ×1 U
T
1 ×2 U

T
2 ×3 . . .×N UT

N ,

i = 1, 2, . . . ,M.
(6)

such that Yi, (i = 1, 2, . . . ,M) captures most of the variations observed in the original tensor objects Xi.
Here, N projection matrices Un (n = 1, 2, . . . , N) need to be determined. Generally, we fix N − 1

projection matrices U1, . . . ,Un−1,Un+1, . . . ,UN to solve for Un. In MPCA, Un consists of the Ln

eigenvectors corresponding to the largest Ln eigenvalues of the matrix

Φ(n) =
M∑

m=1

(Xm(n) − X̄(n)) ·UΦ(n)

·UT
Φ(n) · (Xm(n) − X̄(n))

T

(7)

where X̄(n) denotes the mode-n unfolding matrix of the mean values of X , Xm(n) denotes the mode-n
unfolding matrix of the mean values of Xm and

UΦ(n) = (Un+1 ⊗Un+2 ⊗ . . .⊗UN ⊗U1 ⊗ . . .⊗Un−1). (8)

In Eq. (7), UΦ(n) is to use the fixed N−1 projection matrices U1, . . . ,Un−1,Un+1, . . . ,UN to transform
the corresponding N − 1 modes.

When Xi (i = 1, 2, . . . ,M) is a 2nd-order tensor, Eq. (6) is simplified to

Yi = Xi ×1 U
T
1 ×2 U

T
2 , i = 1, 2, . . . ,M. (9)

If we only transform mode-2, U1 is an identity matrix of size I1. Then, UΦ(2) is also an identity matrix
and Xm(2) = XT . In this case, Eq. (7) is simplified to

Φ(2) =

M∑
m=1

(XT
m − X̄T ) · (XT

m − X̄T )T

=

M∑
m=1

(Xm − X̄)T · (Xm − X̄)

(10)
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Eq. (10) is exactly the image covariance (scatter) matrixGt in 2D-PCA [19]. So, 2D-PCA is a special case
of MPCA. When objects are represented by matrices and only rows of matrices need to be transformed,
MPCA degenerates into 2D-PCA.

When Xi, (i = 1, 2, . . . ,M) are 1st-order tensors, Eq. (6) is simplified to

yi = xi ×1 U
T
1 , i = 1, 2, . . . ,M. (11)

In this case, Eq (7) is simplified to

Φ(1) =
M∑

m=1

(xm − x̄) · (xm − x̄)T (12)

The above equation is exactly the scatter matrix in PCA. So, PCA is a special case of MPCA. When
objects are represented by vectors, MPCA degenerates into PCA.

Following the above analysis, 2D-PCA applies PCA transformation on rows of matrices, and MPCA
applies PCA transformation on all modes of tensors.

Similarly, through the above analysis, one can notice that DATER also applies LDA transformation on
all modes of tensors. Likewise, GTDA, TSA and DTSA also applies MSD, LPP and DLPP transformation
on all modes of tensors respectively. There are several other tensor subspace transformation methods
that also applies a single type of transformation on all modes of tensors, however due to page limit we
chose to only mention a portion of these algorithms.

Fusion tensor subspace transformation framework

Tensor subspace transformation method firstly initializesN projection matricesU1, . . . ,Un−1,Un,Un+1, . . . ,UN

as identity matrices or randommatrices, then fixesN−1 projection matricesU1, . . . ,Un−1,Un+1, . . . ,UN .
Following, the matrices are used to transform Xi, and the transformed results are unfolded on mode-n.
Finally, Un is obtained by implementing a certain transformation on the mode-n unfolding matrices. We
can see that the solution of Un depends on the other projection matrices. N projection matrices are
solved by constructing an iterative procedure.

Existing tensor subspace transformation methods only implement one transformation strategy on all
modes. In the real world, each mode of tensors may represent a different type of information. We should
implement different transformation strategies on different modes according to their semantic meaning.
So we propose a Fusion Tensor Subspace Transformation (FTSA) framework, which is described in
Algorithm 1. In Algorithm 1, the statement denoted (*) is the core statement in the framework. For
a certain represented object, different transformations are used on different modes according to their
semantic meaning.

In the algorithm, we use the maximal iterative times Tmax to deal with the problem that the algorithms
may be not convergent. Actually, the convergence of many tensor subspace analysis algorithms cannot
be generally proved, the classification results based on these algorithms show to be stable after rounds of
iterations as illustrated in these papers (e.g. DATER, 2D LDA [20]). The convergence of FTSA depends
on the specific transformations.

Under the framework, we developed the Fusion Tensor Color Space (FTCS) model for face recognition.

Fusion tensor color space model

Recently, researches showed that color information may help to improve the face recognition accuracy.
While, the R, G, and B component images in the RGB color space are correlated. Decorrelation among
the components of these images helps reduce redundancy and is an important strategy to improve the
accuracy of subsequent recognition method [21]. Liu [22] proposed the Uncorrelated Color Space (UCS),
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Algorithm 1 Fusion tensor subspace transformation framework

INPUT: M N -order tensors Xi ∈ RI1×I2×...×IN , i = 1, 2, . . . ,M .
OUTPUT: Un, n = 1, 2, . . . , N .
Initialize Un with a set of identity matrices;
for t = 1 to Tmax do
for n = 1 to N do
for i = 1 to M do
Y(n)
i = Xi ×1 U

T
1 . . .×n−1 U

T
n−1 ×n+1 U

T
n+1 . . .×N UT

N ;

Yi(n) ← the mode-n unfolding matrix of Y(n)
i ;

end for
n-th transformation on M matrices Yi(n) to obtain Un; (*)

end for
if t > 2 and ∥Un −Upre

n ∥2 < εn, n = 1, 2, . . . , N , where Upre
n is Un in the previous iteration. then

break;
end if

end for

the Independent Color Space (ICS), and the Discriminating Color Space (DCS). Specifically, the UCS
applies PCA to decorrelate the R, G, and B component images. The ICS and DCS further enhance
the discriminating power for the subsequent recognition method by means of Independent Component
Analysis (ICA [23]) and LDA, respectively. The experimental results showed that ICS obtains the best
color space because its components are not only uncorrelated but also independent.

Many papers have reported that the discriminant analysis methods on facial images can enhance
subsequent recognition method [3] [5]. Color Image Discriminant model (CID) [24], borrowing the idea of
LDA, aims to seek an optimal color space and an effective recognition method of color images in a unified
framework. Tensor Discriminant Color Space (TDCS) [25] model, borrowed the idea of DATER [13],
seeks two discriminant projection matrices U1, U2 corresponding to the facial spatial information and
one color space transformation matrix U3 corresponding to the color space. Actually, TDCS uses LDA
transformation on both facial spatial information and color space information. They [26] also used elastic
net to propose Sparse Tensor Discriminant Color Space (STDCS).

For color space information, however, ICA transformation is better than LDA transformation [22].
Motivated by the insights, we explore a Fusion Tensor Color Space (FTCS) model which applies discrim-
inant analysis on the facial spatial information and applies ICA on the color space information.

A color facial image is naturally represented by a 3rd-order tensor, where mode-1 and mode-2 of a
tensor are facial spatial information and mode-3 of tensor is the color space information. For instance, a
RGB image with size I1 × I2 is represented as a tensor A ∈ RI1×I2×I3 , where I3 = 3. The mode-3 of A
is the color variable in the RGB color space which has 3 components corresponding to R, G and B in
RGB space. FTCS uses LDA on the first two modes and ICA on the third mode.

Assuming C is the number of individuals, X c
i is the ith color facial image of the cth individual, and

Mc is the number of color facial images of the cth individual, where M = M1 + M2 + . . . + MC . the
FTCS algorithm seeks two discriminant projection matrices U1 ∈ RI1×L1 , U2 ∈ RI2×L2 and a color space
transformation matrix U3 ∈ RI3×L3 (usually L1 < I1, L2 < I2 and L3 ≤ I3) for transformation

Yc
i = X c

i ×1 U
T
1 ×2 U

T
2 ×3 U

T
3 ,

i = 1, 2, . . . ,Mc, c = 1, 2, . . . , C.
(13)

where U1 and U2 are obtained by using discriminant analysis and U3 is obtained by using ICA.
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The mean image of the c-th individual and the mean image of all individuals are defined by:

X c
=

1

Mc

Mc∑
i=1

X c
i and X =

1

C

C∑
c=1

X c
(14)

The between-class scatter and within-class of color images are defined as:

Ψb(X ) =
C∑

c=1

∥X c −X∥2F (15)

and

Ψw(X ) =
C∑

c=1

Mc∑
i=1

∥X c
i −X

c∥2F . (16)

We can define mode-n between-class scatter matrix S
(n)
b and mode-n within-class scatter matrix S

(n)
w

as:

S
(n)
b =

C∑
c=1

(
X

c

(n) −X(n)

)
ŨnŨ

T
n

(
X

c

(n) −X(n)

)T

(17)

and

S(n)
w =

C∑
c=1

Mc∑
i=1

(
Xc

i(n) −X
c

(n)

)
ŨnŨ

T
n

(
Xc

i(n) −X
c

(n)

)T

, (18)

where Ũn = UN ⊗ . . .⊗Un+1 ⊗Un−1 ⊗ . . .⊗U1, n = 1, 2, 3.
Then, the between-class scatter of the projected tensors Ψb(Y) and the within-class scatter of the

projected tensors Ψw(Y) can be rewritten as follows:

Ψb(Y) = tr
(
UT

nS
(n)
b Un

)
(19)

and
Ψw(Y) = tr

(
UT

nS
(n)
w Un

)
. (20)

So, given U2 and U3 (or U1,U3), U1 (or U2) can be obtained by the following discriminant analysis:

max
tr

(
UT

nS
(n)
b Un

)
tr

(
UT

nS
(n)
w Un

) n = 1, 2 (21)

According to Rayleigh quotient, Eq. (21) is maximized if and only if the matrix Un consists of Ln

generalized eigenvectors, which corresponds to the largest Ln generalized eigenvalues of the matrix pencil

(S
(n)
b ,S

(n)
w ), which satisfies:

S
(n)
b u = λS(n)

w u n = 1, 2 (22)

Since S
(n)
b and S

(n)
w are dependent on U1, . . . ,Un−1,Un+1, . . . ,UN , we can see that the optimization

of Un depends on the projections of other modes.
In order to obtain U3, we use ICA 1. to decorrelate the RGB color space. we use U1 and U2, which

are obtained through the above discriminant analysis, to transform:

Yc(3)
i = X c

i ×1 U
T
1 ×2 U

T
2 ,

i = 1, 2, . . . ,Mc, c = 1, 2, . . . , C.
(23)

1For ICA operations, we used Hyvarinen’s fixed-point algorithmhttp://www.cis.hut.fi/projects/ica/fastica/
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Figure 2. Sample images of one individual from the AR database.

where Yc(3)
i ∈ RL1×L2×I3 . M 3rd-order tensor Yc(3)

i are concatenated to a 4th-order tensor F ∈
RL1×L2×I3×M . The mode-3 unfolding matrix F(3) is a 3 × K matrix, where K = L1 × L2 ×M and
the three rows of F(3) corresponding to the three components in RGB space, respectively.

The color space transformation matrix U3 may be derived using ICA on F(3). The ICA of F(3)

factorizes the covariance matrix ΣF into the following form:

ΣF = U−1
3 ▽U−T

3 (24)

where ▽ ∈ R3×3 is diagonal real positive and U3 transforms RGB color space to a new color space whose
three components are independent or the most independent three component possible. The U3 in Eq.
(24) may be derived using Comon’s ICA algorithm by calculating mutual information and high-order
statistics. As a result, an iterative procedure can be constructed to obtain U1, U2 and U3.

Results

Experiments and results on the AR database

The AR database contains over 4,000 color facial images of 126 people. Each individual participated in
two photo sessions. In both sessions, the pictures were taken under identical requirements and conditions.
In our experiments, we selected 100 people, where 14 images of each individual are selected and occluded
face images are excluded. These facial images have been cropped [27] and can be downloaded from the
AR face database official web2. All images are cropped and resized to 32× 32 pixels. The sample images
for one individual of the AR database are shown in Fig. 2, where the images on the top row are from
the first session as the training set, and the images on the bottom row are from the second session as the
testing set.

In this experiment, we trained FTCS, TDCS3 and CID. The convergence threshold ϵ was set as 0.1
and x1 was initialized as [ 13 ,

1
3 ,

1
3 ]

T . In this case, we got three color space transformation matrices:

UCID =

 0.4126 −0.2107 −0.5558
−0.0261 −0.4683 1.0536
1.0000 0.9739 −0.5524

 , (25)

UTDCS
3 =

 0.1267 −0.2084 0.3358
−0.2128 −0.4168 −0.7897
0.9689 0.8848 0.5134

 (26)

2http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
3Although STDCS [26] is better than TDCS, we still did not compare FTCS to STDCS. Because the motivation of the

paper is to implement different transformations on different modes of a tensor.
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Figure 3. Illustration of R, G, and B color components and the various components generated by CID,
TDCS and FTCS on the AR face database.

and

UFTCS
3 =

−0.2220 −0.1853 0.6189
−0.6473 0.0507 0.2239
0.7292 −0.9814 0.7529

 (27)

Using these three matrices, we obtained three color components D1, D2, D3 of CID; three color compo-
nents T1, T2, T3 of TDCS and three color components F1, F2, F3 of FTCS (see Fig. 3).

Meanwhile, we carried out LDA and 2D-LDA on corresponding gray images. In LDA and CID, only
99 discriminant projection basis vectors were extracted. For 2D-LDA, TDCS and FTCS, the spatial
dimensions of the two modes are both reduced to 10. The score matrices were generated by Manhat-
tan distance and Euclidean distance, respectively. The ROC curves of the five methods are shown in
Fig. 4. The results indicate that the performance of FTCS with Manhattan distance obtains the best
performance. However, the space between two curves of FTCS is narrower than the space between two
curves of TDCS. This shows that FTCS is more robust to the type of distance used and results of both
Manhattan and Euclidean distance produces closer results than those of TDCS.

In the five algorithms, LDA and CID are used on vectorized face images. Overall, their performances
are poorer than the other three algorithms based on tensorized face images. This shows that the facial
spatial structure information is important to the face recognition. Specially, when the false accept rate is
less than 0.03, the performance of 2D-LDA outperforms that of TDCS with the color information. In the
case, the color information fails to work for face recognition. This is due to the fact that the color space
information is transformed by LDA, which is not an optimal transformation for color space information
in comparison to ICA. Whereas, FTCS uses ICA on the color space information. As a results, FTCS
obtains the best performance.

Table 1. Verification rate (in percent) comparison of the five methods, respectively, when
the FAR is 0.1

FTCS TDCS CID 2D-LDA LDA

Manhattan 71.97 48.10 42.99 54.82 30.29
Euclidean 70.73 62.63 52.70 53.14 33.50

Table 1 list the verification rates of the five methods with 0.1 FAR. In both cases of Manhattan
distance and Euclidean distance, FTCS gets the best verification rate among the five methods. For Man-
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Figure 4. ROC curves of FTCS, TDCS, CID, 2D-LDA and LDA on the AR face database.

hattan distance, 2D-LDA without the color information is better than TDCS with the color information.
Whereas, FTCS outperforms 2D-LDA. This also shows that ICA is better than LDA to transform the
color space information.

Experiments and results on the LFW face database

LFW database4 is designed for studying the problem of unconstrained face recognition. It contains more
than 13,000 images of faces collected from the web. In our experiments, we chose 1,251 images from 86
people each with 11-20 images. Each image was manually cropped and resized to 32× 32 pixels. Sample
images of one individual from the LFW database are shown in Fig. 5. From Fig. 5, we can see that the skin
color of the same person are different due to various cameras. In this experiment, we randomly selected
⌊p/2⌋ images of each person (the person has p images) as the training set and the remaining images as
the testing set. The CID, TDCS and FTCS models were trained and three color space transformation
matrices were obtained as follow:

UCID =

 1.0000 −1.0089 −0.3600
0.3166 0.2805 0.9981
−0.2236 0.9078 −0.6621

 , (28)

UTDCS
3 =

−0.9103 0.6923 0.1885
0.4085 −0.7043 −0.7688
−0.0673 −0.1571 0.6111

 (29)

4http://vis-www.cs.umass.edu/lfw/
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Figure 5. Sample images of one individual from the LFW database.

and

UFTCS
3 =

−0.3602 0.8170 −0.9108
0.9032 −0.5766 0.1319
0.2336 −0.0017 −0.3912

 (30)

These components are illustrated in Fig. 6.
These three matrices are not the same as Eq. (25), Eq. (26) and Eq. (27) due to the different

training sets. Using these three matrices, we got three color components D1, D2, D3 of CID; three color
components T1, T2, T3 of TDCS and three color components F1, F2, F3 of FTCS.

In the same way, FTCS, TDCS, CID, 2D-LDA and LDA are conducted on the LFW face database.
The results indicate that FTCS has the best performance compared to the other four algorithms from
Fig. 7. We can also see that the curves of 2D-LDA and LDA for gray images are almost consistent. For
the unconstrained face recognition, to use only the spatial structure information can not improve the
performance. Whereas, the color space information further improves the performance. One is also drawn
from Fig. 7 that the color information plays more important role than the spatial structure information
for the unconstrained face recognition.

Discussion

Recently, tensor subspace transformation is a highly mentioned topic, because many real objects can
be represented by tensors. For different objects, the semantic meaning of tensorial modes are different.
Even when the objects are the same, each mode of tensors may express a different semantic meaning.
To the best of our knowledge, there aren’t any existing tensor subspace transformation algorithms which
implements different transformation strategies on different mode of tensors according to their semantic
meaning. In this paper, we propose the fusion tensor subspace analysis framework, which shows an
novel idea that different transformation strategies can applied on different modes of tensor. Under the
framework, we propose FTCS for face recognition. The experimental results show the performances of
the proposed algorithm is better than existing tensor subspace transformation algorithms. FTCS is only
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Figure 6. Illustration of R, G, and B color components and the various components generated by CID,
TDCS and FTCS on the LFW face database.
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Figure 7. ROC curves of FTCS, TDCS, CID, 2D-LDA and LDA on the LFW face database.
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an example of fusion tensor subspace transformation framework. Under the framework, many algorithms
can be developed for action recognition, micro-expression recognition, EEG recognition and so on.
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