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A Main Directional Mean Optical Flow Feature
for Spontaneous Micro-Expression Recognition
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Abstract—Micro-expressions are brief facial movements characterized by short duration, involuntariness and low intensity.
Recognition of spontaneous facial micro-expressions is a great challenge. In this paper, we propose a simple yet effective Main
Directional Mean Optical-flow (MDMO) feature for micro-expression recognition. We apply a robust optical flow method on
micro-expression video clips and partition the facial area into regions of interest (ROIs) based partially on action units. The MDMO is a
ROI-based, normalized statistic feature that considers both local statistic motion information and its spatial location. One of the
significant characteristics of MDMO is that its feature dimension is small. The length of a MDMO feature vector is 36 x 2 = 72, where
36 is the number of ROls. Furthermore, to reduce the influence of noise due to head movements, we propose an optical-flow-driven
method to align all frames of a micro-expression video clip. Finally, a SVM classifier with the proposed MDMO feature is adopted for
micro-expression recognition. Experimental results on three spontaneous micro-expression databases, namely SMIC, CASME and
CASME II, show that the MDMO can achieve better performance than two state-of-the-art baseline features, i.e., LBP-TOP and HOOF.

Index Terms—Micro-expression, optical flow, recognition, feature.

1 INTRODUCTION

ACIAL expressions can provide rich information in so-
Fcial life. Full facial expressions typically last for 0.5-4
seconds [1] and can thus be readily recognized by humans.
However, psychological studies have shown that a person
may conceal but occasionally leak their genuine emotions
[2]. Micro-expressions, once named micro-momentary facial
expressions that might be unknown to or uncontrollable for
humans, were first discovered in 1966 [3]. Three years later,
Ekman [4] used the term micro-expression when he analysed
an interview video of patients who tried to commit suicide.
The work in [4] presented evidence that micro-expressions
can reveal concealed emotions; this evidence has recently
drawn extensive attention from psychologists.

Micro-expression recognition has a wide range of appli-
cations in diverse fields, including clinical diagnosis and
national security. However, micro-expressions are fleeting
and easily neglected by the naked eye. Ekman [5] devel-
oped a Micro-Expression Training Tool (METT) in 2003. In
2009, Frank et al. [6] performed a real-life micro-expression
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test and found that when recognizing at real-time speed,
trained participants (with the help of the METT) only had
an accuracy of less than 50%, not to mention the ordinary
people without training. In [7], a Point Grey GRAS-03K2C
camera was used to collect micro-expression data at high
temporal resolution: the sampling rate was 200 fps and the
resolution was 640 x 480. Two expert coders examined these
video data frame-by-frame without any time restrictions to
spot and code micro-expressions. Furthermore, these two
coders discussed and arbitrated the disagreements. Thanks
to recent well-developed databases [7], [8], [9], the demand
for computer vision techniques to improve the performance
of micro-expression recognition is increasing.

Full-expression recognition has been widely stud-
ied in the computer vision field [10]. However, micro-
expressions have the following characteristics that make
micro-expression recognition quite different from full-
expression recognition. First, micro-expressions are rapid
facial movements, typically occurring in less than 0.5 sec-
ond [11]. Secondly, the intensity of these fleeting micro-
expressions is also very low in terms of facial muscle-
s’ movement. Thirdly, no complete micro-expressions in-
volving both the upper and lower halves of the face
simultaneously were observed in [12]; in other words,
micro-expressions typically involve a fragment of the facial
region. Therefore, previous work that were suitable for
full-expression recognition may not work well for micro-
expressions. Automatic micro-expression recognition algo-
rithms have recently received attention [7], [8], [9], [13],
but there is still considerable room for improvement in
recognition accuracy.
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2 RELATED WORK

The flourishing of full-expression recognition methods [10]
depends largely on the well-established facial expression
databases, such as CK+, MUG, MM], JAFFE and Multi-PIE.
However, there are few well-established micro-expression
databases due to the difficulty of eliciting micro-expressions.
To the best knowledge of the authors, there are only
five publicly-available micro-expression databases (USF-HD
[14], Polikovsky’s database [15], SMIC [8], CASME [9], [16]
and CASME 1I [7]), and only three of them (SMIC, CASME
and CASME II) are spontaneous.

In the USF-HD database [14], 100 acted facial micro-
expressions were collected, and strain patterns were used
for feature description. However, acted facial expressions
have been found to differ significantly from natural facial
expressions that occur in daily life [17]. In this paper, we
study micro-expression recognition using three spontaneous
micro-expression databases (SMIC, CASME, CASME II).

The SMIC database [13] contains 77 spontaneous micro-
expressions recorded from 6 subjects in two categories (neg-
ative or positive), which was further extended in [8] to in-
clude 164 micro-expression video clips elicited from 16 par-
ticipants. The CASME database was developed in [9], [16]
and contains 195 spontaneous micro-expressions recorded
from 20 subjects. Seven categories (happiness, sadness, dis-
gust, surprise, fear, repression and tenseness) were annotat-
ed for these 195 spontaneous micro-expressions based on (1)
action unit coding, (2) the main emotion of the video episode
and (3) participants’ self-reports. Because there are few
and insufficient samples for sadness, fear and repression,
only four categories, namely, positive (happiness), negative
(sadness, disgust, fear), surprise and the others (repression,
tenseness) were used to train and evaluate the algorithm.
CASME 1II was developed in [7] and has improved video
quality and sample size compared with CASME:

e More details of facial muscle movement: compared
to 100 fps in SMIC and 60 fps in CASME, the record-
ing rate in CASME 2 is 200 fps;

o A larger face size in video clips: compared to 190 x
230 pixels of facial regions in SMIC and 150 x 190
pixels in CASME, the facial region in CASME II is
approximately 280 x 340 pixels.

Micro-expressions in CASME II were elicited in a well-
controlled laboratory environment, and proper illumination
was used to remove light flickering. Among approximately
3,000 facial movements in 26 subjects, 247 micro-expressions
were selected.

The recognition method developed in this paper is based
on the optical flow field in micro-expression video clips.
Optical flow has been widely studied in computer vision
for more than three decades, and has also been successfully
applied in full facial expression recognition [18]. Recently,
the accuracy of optical flow estimation has improved signif-
icantly. The reader is referred to [19] for a comprehensive
survey of state-of-the-art optical flow methods.

In this paper, we propose a simple yet effective feature,
called the Main Directional Mean Optical-flow (MDMO) fea-
ture, for spontaneous micro-expression recognition. We ap-
ply a robust optical flow computation method [20], [21] on a
textural part of images and postprocess it using an affine
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transformation such that the resulting optical flow field
is insensitive to lighting conditions and head movements.
Then we detect and partition the facial area into regions
of interest (ROIs). Based on estimated optical flow fields,
the MDMO feature is then designed to be a ROI-based,
normalized statistic feature considering both local statistic
motion information and its spatial location. We show that
the MDMO feature can be used to efficiently recognize
micro-expressions by working with a SVM classifier. We
evaluate our proposed method on three spontaneous micro-
expression databases (SMIC, CASME and CASME II) and
compare MDMO with two state-of-the-art baseline features
(HOOF [22] and LBP-TOP [13], [23]). The experimental
results show that the MDMO achieves better performance
than HOOF and LBP-TOP.

3 PROPOSED METHOD

To build an effective feature for micro-expression recogni-
tion, we first detect and divide the face region into ROIs
in video clips by utilizing a set of facial feature points
obtained from an instance, called discriminative response
map fitting (DRMF) [24], of the constrained local models
[25], [26] (Section 3.1). Then, we compute the optical flow
field in each frame of a micro-expression video clip (Sec-
tion 3.2). We propose an alignment method in the optical
flow field domain to reduce the influence of noise induced
by head movements (Section 3.3). Based on the ROIs and
aligned facial regions, we propose an novel MDMO feature
(Section 3.4). Finally, we use the MDMO feature to train
a SVM classifier for micro-expression recognition (Section
3.5). Experimental results with comparison to two baseline
features (HOOF and LBP-TOP) on three spontaneous micro-
expression databases (SMIC, CASME, CASME 1I) are pre-
sented in Section 4.

3.1 ROl Partitioning in Facial Regions

We use the DRMF method [24] to robustly detect a set of
facial feature points in the facial region of the first frame in
each micro-expression video clip. We briefly summarize this
method below.

First, the Viola-Jones face detector [27] is used to locate
the facial region in each frame. Second, a set of initial feature
points is computed by extracting response patches followed
by a low-dimensional projection. Third, DRMF iteratively
disturbs these initial feature points by correlating with the
target image a generated feature template that controls the
shape and appearance variation learned from a training set.
The statistical models of shape and appearance patterns of
variability, which are presented in [28], [29], are applied in
the DRMF method in a robust and accurate manner to locate
68 feature points in the facial region.

In our application, we use 66 feature points obtained
from the DRMF method, i.e., two feature points identifying
inner lip corners were not used in our micro-expression
recognition. One example is shown in Figure 1 (left). All
66 feature facial points in a frame are denoted as F'P =
{fp1, fp2, -, fpes}. The portion of the facial region in
different frames often varies in practice. Our method uses
the detected set ' P of feature points to normalize the facial
region in each frame. See Figure 1 (right) for an example.
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Fig. 1. Left: detection of 66 feature points in a facial region using the
DRMF method. Right: the normalized facial area.

Fig. 2. Left: the partitioning of 36 regions-of-interest (ROls), which are
uniquely determined by the 66 feature points as shown in Figure 1.
Right: the position of the vertex shared by ROIs 21, 22, 25 and 26 is
the average of positions of two feature points with IDs 4 and 33.

We further partition the normalized facial region into 36
ROIs (see Figure 2, left). The locations of these ROIs are
uniquely determined by the 66 feature points. For example,
as illustrated in Figure 2 (right), the position of the vertex
shared by ROIs 21, 22, 25 and 26 is the average of positions
of two feature points, f4 and f33. The specification rules
of all vertices in the 36 ROIs are provided in Supplemental
Material. The partitioning of these 36 ROIs is partially based
on the facial action coding system [30], e.g., the eyebrow
is divided into outer and inner parts. Two guidelines are
applied:

e ROI partitioning should not be too coarse; other-
wise, many AUs will locate at similar or overlapping
portions of the face. On some portions, such as the
mouth, more partitions are provided to better dis-
criminate different AUs.

e ROl partitioning should not be too dense. It is gener-
ally sufficient for each ROI to correspond to at least
one AU; for example, ROI one is only related to AU2
and does not need to be subdivided further.

The correspondence between our ROI partitioning and AUs
is summarized in Table 1.

In the following sections, we use grey-scale images of
micro-expressions for a clear representation.

3.2 Computation of Optical Flow Fields

Optical flow infers the motion of objects by detecting the
changing intensity of pixels between two image frames over

3
ROI No AU No ROI No AU No
1 AU2 19 AU6, AU7
2 AU1, AU4 20 AU6
3 AU1, AU4 21 AU6
4 AU1, AU4 22 AU10, AU11, AU12
5 AU1, AU4 23 AU10, AU11, AU12
6 AU2 24 AU6
7 AU6 25 AU12, AU15
8 AU2, AU5S 26 AU10, AU12, AU13, AU14
AU15, AU18, AU23, AU24
9 AU1, AU4 27 AU10, AU12, AU13, AU14
AU15, AU18, AU23, AU24
10 AU9 28 AU12, AU15
11 AU9 29 AU1l6, AU18, AU20
AU23, AU24
12 AU1, AU4 30 AU18, AU23, AU24
13 AU2, AU5S 31 AU18, AU23, AU24
14 AU6 32 AU1l6, AU18, AU20
AU23, AU24
15 AU6 33 AU16, AU20
16 AU6, AU7 34 AU17
17 AU9 35 AU17
18 AU9 36 AU16, AU20
TABLE 1
Correspondence between ROl numbers and the numbers of action
units (AUs).

time. In a video clip, a pixel at location (z, y, t) with intensity
I(z,y,t) will have moved by Az, Ay and At between the
two frames. According to the brightness constancy con-
straint, we have

I(z,y,t) = I(x + Az, y + Ay, t + At) 1)
Assuming that the movement is small, the image constraint
at I(x,y,t) can be developed with a Taylor series to obtain:

I(x + Az, y + Ay, t + At) =

I(x,y,t)—l—%Aw—i—%Ay—i— ANt + 71 @)

where 7 is a higher-order infinitesimal. From these equa-
tions it follows that:

oI oI oI

%Al‘ + @Ay + aAt =0 3)
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or At dy At Ot At

which results in

ol oI oI

Vet 7 Vy+ 5 =

g oy o
where V,, and V), are the 2 and y components, respectively,
of the velocity or optical flow of I(z,y,t). Thus, between
two frames with distance At, the optical flow value of a
pixel at time ¢ is expressed as a two-dimensional vector:

v vir (6)

0 )

Many methods can be used to compute the optical flow field
[19]. In our implementation, we use the method presented
in [21].

The brightness constancy constraint is suitable for the
CASME 1II database, in which the micro-expressions were
recorded in a well-controlled laboratory environment and
proper illumination was used to remove light flickering.
However, for the databases of SMIC and CASME, the illu-
mination changes between image frames may influence the
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(a) An original image sequence

(b) Optical flow fields directly computed from (a)

(c) Optical flow features directly computed from (b)

|

\

(d) Optical flow fields after alignment of frames in image domain

(e) Optical flow features computed from (d)

(f) Optical flow fields after alignment of frames in optical flow domain

. : v“‘ g .

(g) Optical flow features computed from (f)

Fig. 3. The optical flow of an image sequence in the micro-expression
labeled by “tense” in CASME II. Due to limited space, we only show
seven frames: 2nd, 4th, 6th, 8th, 10th, 12th, 24th. Optical flow fields in
(b), (d) and (f) are visualized using the color coding scheme in [31].

accuracy of optical flow estimation. To address the intensity
inconsistency problem, we use the method in [20] to pre-
process the image sequence: each image is decomposed into
two parts, that is, a structural part and a textural part. It was
shown in [20] that the intensity inconsistency due to shadow
and shading reflections can only appear in the original
image and the structural part, and thus, the computation
of optical flow in the textural part can provide an accurate
result. One example of the optical flow computation is
shown in Figures 3(b), 3(d) and 3(f).

3.3 Face Alignment in the Optical Flow Domain

In the short duration of a micro-expression, there may be
a small rotation and translation of the facial region in the
image sequence. To correct this small head movement, for
a micro-expression video clip, we use the positions of some
feature points in the first frame. Among the 66 facial feature
points (Figure 1, left) detected by using the DRMF method,
we choose 13 feature points (Figure 4) including one at the
nose root and the others at the contour of the facial region.
These 13 feature points are least affected by the actions of
various micro-expressions.

Fig. 4. At the first frame of a micro-expression, 13 feature points (includ-
ing one at the nose root and the others at the contour of facial region)
are detected by the DRMF method to align all subsequent frames.

For each frame f; (i # 1) in a micro-expression video
clip, we align f; with f; by computing the optical flow
between f; and fi. Denote the resulting optical flow field
in f; as O;. Let

pl_ [pg}l Pr2

py] py2

be the positions of 13 chosen feature points in the first frame
f1. Given O;, the positions P* of 13 feature points in f;,

1 T
p;f13:|
py13

i i i 1T
Pi _ |:px1 p@Z pa_:13:|
p;1 p;Q p:Zng ’
can be determined by
io=pl 4 VI
i IR EANRC RN
Pyj = Py; yj

where [V/;, VT is an optical flow vector of the jth feature
point in O; (ref. Eq. 6). Given P! and P?, an affine transfor-

mation matrix T* can be readily obtained by solving
arg min [P*T* — P'(| ®)
T

Our method presented above is to align the frames in the
optical flow domain. That is, the optical flow in each frame
is first computed, and then, this frame is aligned with the
first frame by applying an affine transformation determined
by the correspondence of optical flows. There is another pos-
sible method to align the frames in the image domain. That
is, 13 feature points are first detected in all frames by using
the DRMF method, and then, each frame is aligned with the
first frame by applying an affine transformation determined
by the correspondence of feature points. One example of
alignment in the optical flow domain is illustrated in Figure
3(f), and one example of alignment in the image domain
is illustrated in Figure 3(d). Our optical-flow-domain-based
alignment method can lead to a smoother and better face
alignment than the image-domain-based method because
the optical flow estimation is more robust than feature point
detection in each frame.

3.4 MDMO feature

In this section, we propose a MDMO feature for micro-
expression recognition.

The optical flow between the first frame f; and each f; of
subsequent frames after alignment is denoted as [V, V;]T.
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Fig. 5. The histogram of oriented optical flow with a bin number 8. For
example, the optical flow vectors of angles «, 8 and ~ belong to the 2nd,
5th and 7th bins.

We convert the Euclidean coordinates [V, V;]T into polar
coordinates (p;, 0;), where p; and 6; are the magnitude and
direction of the optical flow vectors, respectively.

In each frame f;, we consider the optical flow inside each
ROI RF, where i = 2,3,--- ,ny is the index of frames and
k = 1,2,---,36 is the index of ROIs. Inside each Rf’, a
histogram of oriented optical flow (HOOF) [22] is computed
as follows. Denote the optical flow vector at a location p €
R as uF(p) = (p¥(p), 0¥ (p)). All of the optical flow vectors
u?(p), p € R, are classified into eight bins (see Figure 5)
according to their direction 6% (p).

In contrast to the original HOOF feature, which uses
a distribution of optical flow represented by a normalized
histogram, we select the bin in which the number of optical
flow vectors is maximum and compute a mean vector as the
feature vector to characterize ROI RF:

1
=—=—" >  up )

B
| mal' uf (p)eBm,am

where B, is the set of optical flow vectors falling in the
bin with maximum count and |- | denotes the set cardinality.

Note that 6 = (p¥, 6F), in which 6% is called the main
direction of the optical flow in ROI Rf. Furthermore, we
build a feature ¥; for the ith frame by

v, = (ﬁ%,ﬁ?,.u 71_1?6)

(10)

The dimension of ¥, is 36 x 2 = 72, where 36 is the number
of ROIs.

After extracting the optical flow feature ¥; for every
frame f;, a micro-expression video clip is represented by
optical flow feature series I' = (¥y,¥y,---, ¥, ), where
ny is the frame number of the video clip. Considering that
the frame number n; may be various in different clips and
the magnitudes of feature vectors in different ROIs may be
widely distributed, we use the following normalization.

We define the Cartesian coordinate counterparts of polar
coordinates ¥ and feature ¥; as C(@f) = (z%,y¥) and
C(¥;) = (C(u}),C(u?),---,C(u3)), respectively. We use
a Cartesian coordinate average to obtain the MDMO feature:

ny
m%=;2mw (a1
i=1

Then, we convert C(¥) back into polar coordinates repre-
sented by

U= [(51751)T7(ﬁ2a§2)T7'“ 7(?367936)71} (12)

5

Because the strengths of the main directions in different
video clips may be different, we further normalize the
magnitudes in ¥ by

P = t k=12,

, 36
max{p;,j =1,2,---,36}’

(13)
Note that ¥ is a feature for one micro-expression video
clip and different video clips have different scaling factors
max{p;,j = 1,2,---,36} in Eq. (13). Finally, the normal-
ized MDMO feature for a micro-expression video clip is
represented by W:

U= [(ﬁlvgl)T ; (/72,52)T v (,536,536)T}

One example of the normalized MDMO feature U is shown
in Figure 3(g).

The normalized MDMO feature has a good capacity to
recognize micro-expressions, which is demonstrated in the
next section, due to the following reasons:

(14)

o The optical flow is a classic pattern for characterizing
motion in the image sequence. The ROI-based MD-
MO feature, which uses statistic information of the
optical flow in each ROI, considers both local motion
information and its spatial location.

e The optical flow feature that we compute is not
only insensitive to translation and rotation (by face
alignment in the optical flow domain (Section 3.3)),
but also robust with respect to illumination varia-
tions (by preprocessing the image sequence into a
structural part and a textual part (Section 3.2)).

The difference between our normalized MDMO feature
and HOOF features [22] lies in the following aspects:

e The original HOOF feature is a normalized his-
togram quantized by a number of bins, computed
from the entire facial region. As a holistic feature,
even using a large number of bins in HOOF cannot
effectively distinguish the micro-expressions. If we
trivially apply the HOOF feature in each ROI, the
resulting combinatorial HOOF feature will have a
high dimension (e.g., if there are 8 bins in a HOOF,
the dimension is 36 x 8 x 2 = 576), which contains
unnecessary and redundant dimensions.

e Our normalized MDMO feature selects the strongest
component from a ROI's HOOF feature (i.e., the
main direction) and incorporate ROIs’ combinatorial
information. Therefore, the MDMO feature has a low
dimension of 36 x 2 = 72 and achieves a good
tradeoff between the number of dimensions and
effectiveness of characterizing micro-expressions.

The experiments presented in Section 4 show that the MD-
MO feature recognizes micro-expressions better than the
original HOOF and combinatorial HOOF features.
Furthermore, our normalized MDMO feature is com-
putationally simple. Similar to the block-based LBP-TOP
feature [23] that are widely used in recognition of facial ex-
pressions [23] and micro-expressions [13], our feature is also
extracted from a small local neighborhood (called region-
based in this paper) that uses both local motion information
and spatial locations. A significant advantage of the MDMO
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Algorithm 1 Micro-expression recognition using the nor-
malized MDMO feature. A micro-expression database ) =
{w1,wa, - ,wy} is given, in which w; is ith video clip in the
database (2.

1: L. Data Preprocessing

2: for each w;, 7 € n do

3:  for each frame f; ; € w; do

4: Locate facial region by the Voila-Jones face detector
and normalize the facial region;
5:  end for
6:  Detect 66 facial feature points in the first frame using
the DRMF method;
7. for each frame f; ; € w; do
8: Compute the optical flow on the image sequence

with normalized facial areas (ref. Figure 1) using
the illumination insensitive method presented in

Section 3.2;

9: Align the optical flow to remove the possible head
movement using the method proposed in Section
3.3;

10: Partition the face into 36 regions of interest (ROIs)

using the method proposed in Section 3.1;
11:  end for
12: end for
13: II. Feature extraction
14: for each video clip w;, ¢ € n, after preprocessing do
15:  Compute the main directional mean optical-flow fea-
ture ¥; in Eq. (12);
16:  Normalize the magnitudes in ¥, as in Eq. (13) and
obtain the normalized MDMO feature ¥; as in Eq.
(14); _
17:  Pack the feature {Ivll into one-row vector ¥; with a
parameter A as in Eq. (15);
18: end for
19: III. Training and recognition
20: Determine the optimal value of A and optimal parame-
ters of polynomial kernel in SVM by obtaining the best
leave-one-out cross-validation result;
21: Recognition with the optimal value of A.

feature is that it is insensitive to the number of frames in
image sequences. As a comparison, the LBP-TOP feature
used in [13] requires a sufficient number of frames to extract
stable features, and thus, for a short micro-expression with
a small number of frames, a temporal interpolation model
has to be used with the LBP-TOP feature to interpolate the
limited number of frames in a low-dimensional manifold to
obtain a sufficient number of artificial frames.

3.5 Micro-expression Recognition

To recognize micro-expressions, we partition the normalized
MDMO feature in Eq. 14 into two parts:

1) The magnitude part represented by P =

(P1: P2 -5 P36),s
2) the direction part represented by © =
(01,02, 056).

Then, we introduce one parameter A to balance the effect
of P and ©, and rewrite the feature into a one-row vector:

T = (AP, (1 - \)O) (15)

TABLE 2
The best recognition rates of four features for micro-expression
recognition using leave-one-subject-out (LOSO) cross-validation in
three databases.

CASME MDMO LBP-TOP HOOF-whole HOOF-ROIs
68.86% 64.07% 49.70% 55.69%

MDMO LBP-TOP HOOEF-whole HOOF-ROIs
CASMETI 67.37% 57.16% 42.80% 52.12%

SMIC MDMO LBP-TOP HOOF-whole HOOF-ROIs
80.0% 71.40% 51.43% 61.43%

Based on a given micro-expression database, we use
SVM with the polynomial kernel K(z;,z;) = (yzlxz; +
coef)d97¢¢ and the optimal value of \ is determined by
obtaining the best leave-one-out cross-validation result. The
experiment details, including the choice of optimal param-
eters in the polynomial kernel, are presented in the next
section.

The overall recognition algorithm is summarized in Al-
gorithm 1.

4 EXPERIMENT

In this section, we compare our proposed MDMO feature
with two baseline features in micro-expression recognition,
i.e., LBP-TOP [13], [23] and HOOF [22]. We use two versions
of the HOOF feature:

e HOOF-whole: This is the original HOOF feature
applied to the entire facial region. Four to ten bins
are used in the HOOF histogram.

e HOOF-ROIs: This is a combinatorial HOOF feature,
created by applying the HOOF feature in each of
the 36 ROIs. Four to ten bins are used in each ROI’s
HOOF histogram, and the dimension of HOOF-ROIs
ranges from 36 x 4 x 2 = 288 to 36 x 10 x 2 = 720.

The detailed performance on three databases (CASME,
CASME 1II and SMIC) are presented in the following sub-
sections. The main results are summarized in Table 2.

Our micro-expression recognition algorithm relied on
a face alignment in the optical flow domain (Step 9 in
Algorithm 1). Our alignment method (Section 3.3) used 13
facial feature points, including one inner facial point (at nose
root) and twelve contour points. Both micro-expressions
and head movements can disturb the positions of these
points and thus affect the stability of face alignment. In
Supplemental Material, both qualitative and quantitative
studies are presented, showing that our alignment method
is very stable.

4.1 Evaluation on CASME

The CASME database [9] contains 195 spontaneous micro-
expressions. These micro-expressions were recorded from
20 subjects using a 60 fps camera. Two expert coders were
recruited in the work [9] to code the duration and AU
combination in these micro-expressions. They independent-
ly spotted the onset, apex and offset frames, and arbitrated
the disagreement. The reader is referred to [9] for details of
the coding and labelling methods.

Among all 195 samples in CASME, several samples in
which the 66 facial feature points in the first frame could
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Fig. 6. Using original frame numbers in CASME, by leave-one-subject-
out (LOSO) cross-validation, MDMO achieved the best recognition rate
68.26% when A = 0.98 and SVM parameters are v = 0.28, coef = 0
and degree = 2. This figure illustrated the recognition rates (red curve)
when A ranged in [0%, 100%)] with fixed SVM parameters v = 0.28,
coef = 0 and degree = 2. We also illustrated the recognition rates
(green curve) using normalized frame number 70 with the same SVM
parameters, demonstrating that MDMO is insensitive to frame numbers.

not be correctly detected by using the DRMF method [24]
were removed from our experiment. Then, we used 167
samples from 16 subjects, categorized in four classes: Positive
(9 samples), Negative (48 samples), Surprise (15 samples), and
Others (95 samples).

Optimal SVM parameter setting. LIBSVM [32] with
the polynomial kernel K(z;,z;) = (yalz; + coef)deoree
was used in our experiment. Multiclass classification can
be performed in LIBSVM. In our application with k = 4
classes, k(k — 1)/2 = 6 classifiers were constructed, each of
which was used to train data from two classes; see Section
7 in [32] for further details. As suggested in the LIBSVM
manual', the default setting of parameters in the polynomial
kernel was v = 1/num_features = 0.014, coef = 0 and
degree = 3. To find an optimal set of parameters, we search
the spaces v € [0, 1] with an interval 0.01, coef € {0,1} and
degree € [1,10] with an interval of 1. In other words, for
each set of parameters, the recognition rate was computed,
and the optimal set corresponded to the highest recognition
rate. To use the MDMO feature, we also searched the space
A € [0%, 100%)] with an interval of 1%.

Subject-independent evaluation. Leave-one-subject-
out (LOSO) cross-validation was applied for subject-
independent evaluation, i.e., in each fold, one subject was
used as the test set, and the others were used as the training
set. After 16 folds, each subject has been used as the test
set once, and the final recognition accuracy was calculated
based on all of the results. The experimental results showed
that the MDMO feature achieved the best recognition rate
(68.26%) in CASME with A = 0.98, v = 0.28, coef = 0
and degree = 2. The recognition rates when changing A
in [0%,100%] with fixed SVM parameters of v = 0.28,
coef = 0 and degree = 2 are summarized in Figure 6 (red
curve). The result A = 0.98 indicated that on CASME, the

1. http:/ /www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 7. Using normalized frame number 70 in CASME, by leave-one-
subject-out (LOSO) cross-validation, MDMO achieved the best recogni-
tion rate 68.86% when A = 0.91 and SVM parameters are v = 0.22,
coef = 0 and degree = 2. This figure illustrated the recognition rates
(green curve) when X ranged in [0%, 100%)] with fixed SVM parameters
v = 0.22, coef = 0 and degree = 2. We also illustrated the recognition
rates (red curve) using original frame numbers with the same SVM
parameters, demonstrating that MDMO is insensitive to frame numbers.

magnitude part P in the vector form (Eq. 15) of the MDMO
feature plays a dominant role.

Normalized frame number. In the CASME database,
the number of frames for the shortest video clip sample is
10, and the number of frames for the longest sample is 68.
Pfister et al. [13] proposed using graph embedding to tem-
porally interpolate frames at arbitrary positions and then to
obtain a sufficient number of frames. It was argued in [13]
that the temporal interpolation of frames can extract more
statistically stable LBP-TOP features for micro-expression
recognition. In our experiment, to offer a fair comparison
with LBP-TOP, the frame numbers of all samples were
normalized to 70 by using linear interpolation, and we
found that a frame number of more than 70 produced
unnecessary redundance, which degraded recognition per-
formance. We applied the MDMO feature on samples with
a normalized frame number, and the best recognition rate
was 68.86% at A = 0.91 (with the optimal SVM parameters
v = 0.22, coef = 0 and degree = 2), which is slightly
better than the performance (best recognition rate 68.26%)
on the original frame numbers. In Figure 7 (green curve), we
present the recognition rates for normalized frame numbers
when changing A in [0%, 100%] with fixed SVM parameters
v = 0.22, coef = 0 and degree = 2. In Figures 6 (green
curve) and 7 (red curve), we also compare the performance
on the original and normalized frame numbers, and the
results show that our MDMO feature is insensitive to the
number of frames in the sample videos, which is a distinct
characteristic of MDMO compared with LBP-TOP.

Comparison with LBP-TOP and HOOEF. We applied
LBP-TOP to extract features from 36 ROIs in all samples
with a normalized frame number of 70. SVM was optimized
in the same manner as for the MDMO features. In the setting
of LBP-TODP, the radii values in axes X and Y ranged from 1
to 4. To avoid too many combinations of parameters, we
chose R, = R,. The radius value R; in axis T ranged
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from 1 to 4. The number of neighboring points in the XY,
XT and YT planes were all set to be 4 or 8. The uniform
pattern and basic pattern were used in LBP coding. The
recognition rates of LBP-TOP with all above parameters are
listed in Table 5 in Appendix A. The results showed that
LBP-TOP achieved the best LOSO recognition rate (64.07%),
with the optimal parameters R, = R, = 4 and R; = 1
in uniform pattern with 8 neighboring points. The best
recognition rate (64.07%) of LBP-TOP is smaller than that of
MDMO (68.86%). We also compare the MDMO feature with
the features of HOOF-whole and HOOF-ROIs. The results
of these two HOOF features on samples of normalized
frame numbers with different parameters are summarized
in Table 6 in Appendix A. The results showed that the best
HOOF feature is HOOF-ROIs, and the best recognition rate
(55.69%) is achieved with a bin number of 8. However, this
best rate (55.69%) of HOOF-ROIs is considerably smaller
than that of MDMO (68.86%).

Subject-dependent evaluation. In some previous works
(e.g., [33], [34]), leave-one-video-out (LOVO) cross valida-
tion was used for subject-dependent evaluation, i.e., in each
fold, one sample video clip was used as the test set, and
the others were used as the training set. After 167 folds,
each sample has been used as the test set once, and the
final recognition rate was calculated based on all of the
results. Except for replacing LOSO with LOVO, all of the
other settings were the same as those in LOSO. Detailed
experimental results of LOVO on MDMO, LBP-TOP and
HOOF are summarized in Supplemental Material. These
results show that:

o using the original frame numbers, MDMO achieved
the best LOVO recognition rate (73.65%) at A = 0.96
with the optimal SVM parameters v = 0.28, coef =
1 and degree = 2;

o using normalized frame numbers,

- MDMO achieved the best LOVO recognition
rate (75.45%) at A = 0.87 with the optimal
SVM parameters v = 0.38, coef = 0 and
degree = 1;

— LBP-TOP achieved the best LOVO recognition
rate (73.05%) with the optimal parameters
R, = R, = 4, Ry = 1 in a uniform pattern
with 4 neighboring points;

— HOOF-whole achieved the best LOVO recog-
nition rate (56.89%) with a bin number of 5;

- HOOF-ROIs achieved the best LOVO recogni-
tion rate (65.27%) with a bin number of 4.

We concluded that in the CASME database, MDMO is
better than LBP-TOP, HOOF-whole and HOOF-ROIs in both
subject-independent and subject-dependent evaluations.

4.2 Evaluation on CASME I

The CASME II database [7] contains 246 spontaneous micro-
expressions, recorded using a high-speed 200 fps camer-
a in an elaborate environment that had proper illumina-
tion without flickering light. These micro-expressions were
recorded from 26 subjects and were selected from nearly
2,500 elicited facial movements. The AU coding and la-
belling methods used were similar to those for CASME, and
the reader is referred to [7] for details.
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Fig. 8. Using original frame numbers in CASME ||, by leave-one-subject-
out (LOSO) cross-validation, MDMO achieved the best recognition rate
67.37% when A = 0.91 and SVM parameters are v = 0.5, coef = 1
and degree = 2. This figure illustrated the recognition rates (red curve)
when X ranged in [0%, 100%)] with fixed SVM parameters. We also
illustrated the recognition rates (green curve) using normalized frame
number 150 with the same SVM parameters, demonstrating that MDMO
is insensitive to frame numbers.
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Fig. 9. Using normalized frame number 150 in CASME II, by leave-one-
subject-out (LOSO) cross-validation, MDMO achieved the best recogni-
tion rate 64.83% when A = 0.79 and SVM parameters are v = 0.24,
coef = 1 and degree = 2. This figure illustrated the recognition rates
(green curve) when X ranged in [0%, 100%] with fixed SVM parameters.
We also illustrated the recognition rates (red curve) using original frame
numbers with the same SVM parameters, demonstrating that MDMO is
insensitive to frame numbers.

In CASME 1I, the samples in which the facial feature
points in the first frame cannot be correctly detected by
using the DRMF method [24] were removed. Then, we
used 236 samples from 26 subjects, categorized into four
classes: Positive (31 samples), Negative (65 samples), Surprise
(21 samples), and Others (119 samples).

Subject-independent evaluation. The same search strat-
egy of finding an optimal SVM parameter setting in CASME
was used in CASME II. Via LOSO cross-validation, the
MDMO feature achieved the best recognition rate (67.37%)
in CASME II at A = 0.91 with the optimal SVM parameters
v = 0.5, coef = 1 and degree = 2. The recognition



SUBMITTED TO IEEE TRANSACTIONS ON AFFECTIVE COMPUTING

rates when changing A in [0%,100%)] and fixing the SVM
parameters at the optimal setting are summarized in Figure
8 (red curve). All of these results were obtained using the
original frame numbers in CASME IL

Normalized frame number. In the CASME II database,
the frame number of the shortest sample is 24 and that of the
longest sample is 146. To offer a fair comparison with LBP-
TOP, which achieved the best performance in a temporal
interpolation model [13], we normalized the frame numbers
of all samples in CASME II to 150 via linear interpolation.
We applied the MDMO feature on samples of normalized
frame numbers, and the best recognition rate was 64.83%
at A = 0.79 (with the optimal SVM parameters v = 0.24,
coef = 1 and degree = 2), which is smaller than the
performance (best recognition rate of 67.37%) on the origi-
nal frame numbers. In Figure 9 (green curve), we illustrate
the recognition rates on normalized frame numbers when
changing A in [0%, 100%] and fixing the SVM parameters
at the optimal setting. In both Figures 8 (green curve) and
9 (red curve), we also compare the performance on the
original and normalized frame numbers, and the results
consistently show that our MDMO feature is insensitive to
the number of frames in the sample videos.

Comparison with LBP-TOP and HOOF. The LBP-TOP
parameter setting used was the same as in CASME. The
uniform pattern and basic pattern were used in LBP coding.
The recognition rates of LBP-TOP with different parameters
are summarized in Table 7 in Appendix A. We also compare
the MDMO feature with the features of HOOF-whole and
HOOF-ROIs. The results of these two HOOF features on
samples of normalized frame number are summarized in
Table 8 in Appendix A. The results showed that

e LBP-TOP achieved the best LOSO recognition rate
(57.16%), with the optimal parameters R, = R, =4
and R; = 2 in uniform pattern with 8 neighboring
points;

o the best HOOF feature is HOOF-ROIs and the best
recognition rate (52.12%) is achieved with a bin
number of 5;

o Dboth the best recognition rates of LBP-TOP (57.16%)
and HOOF (52.12%) were considerably smaller than
the best recognition rate of MDMO (67.37%).

We further compared the confusion matrices of MDMO
(Table 3) and LBP-TOP (Table 4) when they both obtained
the best recognition rates. The results showed that compared
to LBP-TOP, MDMO had a better recognition capacity in all
four classes.

Subject-dependent evaluation. Detailed experimental
results of LOVO cross validation on MDMO, LBP-TOP and
HOOF are summarized in Supplemental Material. These
results showed that

o using the original frame numbers, MDMO achieved
the best LOVO recognition rate (71.61%) at A = 0.91
with the optimal SVM parameters v = 0.46, coef =
1 and degree = 2;

e using normalized frame numbers,

— MDMO achieved the best LOVO recognition
rate (70.34%) at A = 0.76 with the optimal

TABLE 3
The confusion matrix of MDMO on the CASME Il database at the best
recognition rate, by leave-one-subject-out (LOSO) cross-validation.

Ground truth

Positive | Negative | Surprise | Others

§ [ Positive | 45.16% 3.08% 4.76% 7.61%

E | Negative | 6.45% 53.84% 476% | 10.92%

"qi: Surprise | 3.23% 3.08% 66.67% | 0.80%

& | Others | 45.16% | 40.00% | 23.81% | 80.67%
TABLE 4

The confusion matrix of LBP-TOP on the CASME |l database at the
best recognition rate, by leave-one-subject-out (LOSO)
cross-validation.

Ground truth

Positive | Negative | Surprise | Others
g [ Positive | 19.35% 1.54% 4.76% 9.24%
E | Negative | 3.23% 3231% | 14.29% | 15.13%
'-qB)' Surprise | 12.90% 1.54% 19.05% 4.20%
& | Others | 64.52% | 64.61% | 61.90% | 71.43%

SVM parameters v = 0.36, coef = 0 and
degree = 2;

— LBP-TOP achieved the best LOVO recognition
rate (61.86%) with the optimal parameters
R, = R, = 4, Ry = 3 in a uniform pattern
with 4 neighboring points;

— HOOF-whole achieved the best LOVO recog-
nition rate (47.03%) with a bin number of 7;

- HOOF-ROIs achieved the best LOVO recogni-
tion rate (58.90%) with a bin number of 5.

We concluded that in the CASME II database, MD-
MO is consistently better than LBP-TOP, HOOF-whole and
HOOF-ROIs in both the subject-independent and subject-
dependent evaluations.

4.3 Evaluation on SMIC

The SMIC database [8] was built by recording 20 subjects,
in which 164 spontaneous micro-expressions were selected
from 16 subjects. All data were recorded by usinga high-
speed camera of 100 fps, and half of them were also recorded
by using a 25 fps visible light camera and 25 fps near
infrared camera. We used the first version of SMIC, the same
material (i.e., 17 positive and 18 negative samples from six
subjects) in [13], such that a consistent comparison could
be made with LBP-TOP, whose performance on SMIC was
analyzed in [13].

Here, we only present subject-independent evaluation
results obtained via LOSO cross-validation. The results of
subject-dependent evaluation obtained via LOVO cross val-
idation were similar, and the performance was consistent
with those in CASME and CASME II. The MDMO fea-
ture achieved the best recognition rate (80.0%) in SMIC
at A = 0.80 with the optimal SVM parameters v = 0.1,
coef = 1 and degree = 4. As a comparison, the best
recognition rates of LBP-TOP, HOOF-whole and HOOF-
ROIs were 71.40%, 51.43% and 61.43%. We concluded that
MDMO consistently had the best performance on SMIC.
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TABLE 5
Micro-expression recognition rates (%) of LBP-TOP in CASME with
respect to the number n of neighboring points, by
leave-one-subject-out (LOSO) cross-validation.
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TABLE 7
Micro-expression recognition rates (%) of LBP-TOP in CASME Il with
respect to the number n of neighboring points, by
leave-one-subject-out (LOSO) cross-validation.

Uniform pattern Basic pattern

Parameters

Uniform pattern Basic pattern

Parameters

n=4 n=3~8 n=4 n=3~8 n=4 n=3~8 n=4 n=3~8
Ry =Ry=1,Ri=1 56.89% 55.68% 56.29%  55.68% Ry =Ry=1,R;=1 4280% 50.00% 42.80%  50.00%
Ry =Ry=1,R;=2 5251% 5296% 52.51% 53.52% Ry =Ry=1,R;=2 4492% 5210% 45.63% 50.85%
Ry =Ry=1,R;=3 5357% 5280% 53.15% 55.07% Ry =Ry=1,R: =3 4472% 49.85% 44.72% 52.76%
Ry =Ry=1,Rt=4 5265% 51.44% 52.65% 54.07% Ry =Ry=1,Ri=4 4716% 49.74% 4841% 51.93%
Ry =Ry=2,R=1 5808% 56.89% 58.08% 56.29% Ry =Ry=2,Ri=1 47.03% 46.19% 46.19% 49.15%
Ry =Ry=2,R;=2 51.65% 51.84% 51.65% 53.63% Ry =Ry=2,R=2 4778% 50.50% 47.68%  53.72%
Ry =Ry=2,R=3 5251% 51.14% 52.51% 53.88% Ry =Ry=2,R=3 4615% 5038% 46.77% 54.43%
Ry =Ry=2,R;=4 5522% 51.84% 5522% 52.73% Ry =Ry=2,R=4 4826% 55.61% 48.26% 55.43%
Ry =Ry=3Ri=1 5628% 5749% 56.29% 56.29% Ry =Ry=3,R=1 4195% 4831% 42.37% 48.31%
Ry =Ry=3,R =2 5270% 5273% 52.70% 54.52% Ry =Ry=3,R=2 47.62% 51.30% 47.47% 54.43%
Ry =Ry=3,R=3 53.68% 5181% 53.68% 53.21% Ry =Ry =3,R=3 44.02% 4710% 44.17% 51.99%
Ry =Ry=3,Rt=4 5356% 5590% 53.56% 52.32% Ry =Ry=3Ri=4 4774% 49.71% 46.48% 52.82%
Ry =Ry, =4,Ri=1 5629% 64.07% 56.89% 55.68% Ry =Ry=4,Ri=1 4237% 49.58% 42.37% 47.03%
Ry =Ry=4,Rt=2 5139% 5475% 50.98%  53.21% Ry =Ry=4,Rt =2 43.67% 57.16% 43.67% 52.72%
Ry =Ry=4,R¢=3 5327% 53.83% 52.99% 53.37% Ry =Ry=4,R¢=3 4517% 51.46% 4517% 50.82%
Ry =Ry=4,Rt=4 53.67% 57.03% 53.67% 50.92% Ry =Ry=4,Rt=4 5078% 55.53%  44.33% 53.07%

TABLE 6 TABLE 8

Micro-expression recognition rates (%) of two HOOF features in
CASME with respect to different bin numbers n, by
leave-one-subject-out (LOSO) cross-validation.

HOOEF-whole feature

n=4 5 6 7 8 9 10
42.52%  49.10% 47.90% 49.70% 49.70%  42.52%  42.52%
HOOEF-ROIs feature

n=4 5 6 7 8 9 10
55.09%  53.89%  54.49% 54.49%  55.69%  55.09%  55.09%

5 CONCLUSION

In this paper, we proposed a simple yet effective MDMO
feature for micro-expression recognition. The MDMO is a
ROI-based optical flow feature, which makes use of both
local statistic motion information (i.e., the mean of all optical
flow vectors in a ROI falling into a bin with the maximum
count) and its spatial location (i.e., the ROI to which it
belongs). The feature dimension of MDMO is small, i.e.,
36 x 2 = 72, where 36 is the number of ROIs. To obtain
reliable optical flow vectors, we proposed an alignment
method in the optical flow domain to remove noise induced
by small head movements in micro-expression video clips.
Experimental results on three spontaneous micro-expression
databases (CASME, CASME II and SMIC) showed that com-
pared to two baseline features, i.e., LBP-TOP and HOOEF,
MDMO consistently has the best performance in both
subject-independent and subject-dependent evaluations.

APPENDIX A

In this appendix, some detailed experimental results were
presented.

In Section 4.1, the LBP-TOP and HOOF features were
compared to our proposed MDMO feature on the CASME
database. The recognition rates of LBP-TOP and two HOOF

Micro-expression recognition rates (%) of two HOOF features in
CASME Il with respect to different bin numbers n, by
leave-one-subject-out (LOSO) cross-validation.

HOOEF-whole feature

n=4 5 6 7 8 9 10
41.10%  42.80%  41.10% 42.80% 42.80% 41.10% 41.10%
HOOEF-ROIs feature

n=4 5 6 7 8 9 10
47.88%  52.12%  51.69% 50.85%  50.42%  47.88%  47.88%

features with different parameters were summarized in
Tables 5 and 6, respectively.

In Section 4.2, the LBP-TOP and HOOF features were
compared to the MDMO feature on the CASME II database.
The recognition rates of LBP-TOP and two HOOF features
with different parameters were summarized in Tables 7 and
8, respectively.
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