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Abstract

Recent research efforts reveal that color may provide useful information for face recognition. For

different visual tasks the choice of a color space is generally different. How can a color space be sought

for the specific face recognition problem? To address this problem, this paper represents a color image

as a 3rd-order tensor and presents the tensor discriminant color space (TDCS) model. The model can

keep the underlying spatial structure of color images. With the definition of n-mode between-class scatter

matrices and within-class scatter matrices, TDCS constructs an iterative procedure to obtain one color

space transformation matrix and two discriminant projection matrices by maximizing the ratio of these

two scatter matrices. The experiments are conducted on two color face databases, AR and Georgia Tech

face databases, and the results show that both the performance and the efficiency of the proposed method

are better than those of the state-of-the-art color image discriminant (CID) model, which involve one

color space transformation matrix and one discriminant projection matrix, specifically in a complicated

face database with various pose variations.
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I. INTRODUCTION

As one of the hottest topics in the field of pattern recognition and artificial intelligence, face recognition

has been widely used in public securities, such as crime and terrorist detection, etc. There are various

subspace transformation methods for recognizing faces. Principal Component Analysis (PCA)[1] is a

widely used linear subspace transformation method maximizing the variance of the transformed features

in the projective subspace. Linear Discriminant Analysis (LDA)[2] encodes discriminant information by

maximizing the between-class covariance, while minimizing the within-class covariance in the projective

subspace. Moreover, in order to keep spatial structure information of a gray image, Yang et al.[3] proposed

an algorithm called two-dimensional principal component analysis (2D-PCA) for face recognition, in

which the image covariance (scatter) matrix is directly computed from the image matrix representation. Li

and Yuan[4] extended this idea using discriminant information and presented 2D-LDA, which constructs

the image between-class covariance matrix and the image within-class covariance matrix. All these

methods are methods used to deal with gray face images rather than color face images, because some

past researches suggested that color appears to confer no significant face recognition advantages beyond

the gray[5].

Recent research efforts[6], [7], [8], [9] revealed that color may provide useful information for face

recognition. The experimental results in [6] show that the PCA method using color information can

improve the recognition rate compared to the same method using only gray information. In [7], a RGB

image of size I1 × I2 is transformed into a I × 3 matrix, where I = I1 × I2. 2D-PCA is applied on all

transformed matrices to recognize the color face images. And the results show that its performance can

be improved by about 3% compared to the same method applied on the corresponding gray images. On

dealing with the low-resolution face images (20 × 20 pixels or less), Choi et al.[8] demonstrated that

facial color cue can significantly improve recognition performance compared with gray-based features.

In [9], it is also revealed that the face recognition system on various color spaces (such as RGB, PCS

and YIQ) is better than on gray images.

The RGB color space, as a basis for other color spaces which are usually defined by linear or nonlinear

transformations of the RGB color space, is dominant in computer vision. The nonlinear transformations

color spaces, such as the HSV and L*a*b* color spaces, are generally connected with the human vision

system, while those determined by the linear transformations, such as the YUV and YIQ color spaces[10],

are usually associated with the color of some hardware.

Given a specific problem like face detection or recognition, the choice of a color space is an important
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task[11]. For example, Ikeda[12] chose the HSV color space [12] and Hsu et al.[13] applied the YCbCr

color space[13] to face detection. For face recognition, Jones[14] and Neagoe[15] used PCA to convert a

color facial image from the RGB color space into a color component and two color components respec-

tively. Liu[16] capitalized on a hybrid color space RIQ, which combines the R component image of the

RGB color space and the chromatic components I and Q of the YIQ color space, to increase the accuracy

of face recognition performance due to the complementary characteristics of its component images. Liu

[17] applied PCA, ICA and LDA to obtain the uncorrelated color space (UCS), the independent color

space (ICS), and the discriminating color space (DCS) for face recognition, respectively. In [18], they

took advantage of ICS to improve the face recognition grand challenge (FRGC)[19] performance. Yang

and Liu proposed[20][21] color image discriminant (CID) model borrowing the idea of LDA not only to

get the discriminating color space but also to get the optimal spatial transformation matrix.

Recently, a number of researchers have attempted to recognize face using tensor. The methods based

on tensor can be divided into 2 categories. In one category[22][23], a high order tensor constructs a

multilinear structure and models the multiple factors of facial variation (e.g., different user identities,

various user postures and facial expressions, varying lights, etc.) using high-order SVD[24], [25], [26].

In the other category[27], [28], [29], the conventional transformation methods (such as PCA, SVD and

LPP[30]) are generalized to tensors. They treat a gray image as a 2nd-order tensor, a color image as a

3rd-order tensor.

In this paper, a RGB color facial image of size I1 × I2, defined by a function of two spatial variables

and one color variable, is naturally represented by a 3rd-order tensor A ∈ RI1×I2×3. We model the tensor

discriminant color space (TDCS) by borrowing the idea of DATER[31]. TDCS seeks two discriminant

projection matrices U1, U2 corresponding to two spatial variables of color images and one color space

transformation matrix U3 corresponding to one color variable of the color images. Whereas, CID seeks

a discriminant projection matrix P consisting of one or multiple discriminant projection basis vectors for

image discrimination and a color space transformation matrix X consisting of a set of color component

combination coefficients for color image representation. In contrast to CID, the advantages of TDCS

are: to keep some underlying spatial structure of color images, to avoid losing a part of the discriminant

information and to optimize every column vector of the color space transformation matrix simultaneously.

The rest of this paper is organized as follows: in Section II, we give the related definitions to tensor;

in Section III, we will briefly review the color image discriminant (CID) model; in Section IV, we will

introduce the tensor discriminant color space model (TDCS) and analyze the relations and distinctions

between TDCS and CID theoretically; in Section V, the experiments are conducted on two color face
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databases AR and Georgia Tech face database, and the results show that the efficiency and performance

of TDCS are better than those of CID, especially in the complicated face database with different poses

and clustered background like the Georgia Tech face database; finally in Section VI, conclusions are

drawn and several issues for the future works are indicated.

II. TENSOR FUNDAMENTALS

A tensor is a multidimensional array. More formally, an Nth-order tensor is an element of the tensor

product of N vector spaces, each of which has its own coordinate system. It is the higher-order general-

ization of scale(zero-order tensor), vector(1st-order tensor), and matrix (2nd-order tensor). In this paper,

lowercase italic letters (a, b, ...) denote scalars, bold lowercase letters (a, b, ...) denote vectors, bold

uppercase letters (A, B, ...) denote matrices, and calligraphic uppercase letters (A, B, ...) denote tensors.

The formal definition is given below[26]:

Definition 1. The order of a tensor A ∈ RI1×I2×...×IN is N . An element of A is denoted by Ai1i2...iN or

ai1i2...iN , where 1 ≤ in ≤ In, n = 1, 2, . . . , N .

If we refer to In rank in tensor terminology, we generalize the matrix definition and call column vectors

of matrices as 1-mode vectors and row vectors of matrices as 2-mode vectors.

Definition 2. The n-mode vectors of A are the In-dimensional vectors obtained from A by fixing every

index but index in.

We can unfold the tensor A by taking the n-mode vectors as the column vectors of matrix A(n) ∈

RIn×(I1...In−1In+1...×IN ). These tensor unfoldings provide an easy manipulation in tensor algebra and we

can reconstruct the tensor by an inverse process of n-mode unfolding, if necessary.

Definition 3. The n-mode unfolding matrix of A, denoted by (A)(n) ∈ RIn×(I1...In−1In+1...×IN ), contains

the element ai1...iN at inth row and at [(in+1−1)In+2 . . . INI1 . . . In−1+(in+2−1)In+3 . . . INI1 . . . In−1+

. . .+ (iN − 1)I1 . . . In−1 + (i1 − 1)I2 . . . In−1 + (i2 − 1)I3 . . . In−1 + . . .+ in−1]th column.

Intuitively, the operation shows slicing the tensor along a given direction depending on the n-mode of

unfolding, and then putting the slices side by side in a matrix. The pictorial description is given in Fig.

1 for a 3rd-order tensor.

We can generalize the product of two matrices to the product of a tensor and a matrix.
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Fig. 1. Unfolding of the (I1 × I2 × I3)-tensor A to the (I1 × I2I3)-matrix A(1), the (I2 × I3I1)-matrix A(2), and the

(I3 × I1I2)-matrix A(3) (I1 = I2 = I3 = 4).

Definition 4. The n-mode product of a tensor A ∈ RI1×I2×...×IN by a matrix U ∈ RJn×In , denoted by

A×n U, is an (I1 × I2 × . . .× In−1 × Jn × In+1 × . . .× IN )-tensor of which the entries are given by:

(A×n U)i1i2...in−1jnin+1...iN
def
=

∑
in

ai1i2...in−1inin+1...iNujnin . (1)

This n-mode product of tensor and matrix can be expressed in terms of unfolding matrices for ease of

usage.

(A×n U)(n) = U ·A(n) (2)

Given the tensor A ∈ RI1×I2×...×IN and the matrices U ∈ RJn×In ,V ∈ RJm×Im , one has

(A×n U)×m V = (A×m V)×n U = A×n U×m V (3)

Definition 5. The scalar product of two tensors A,B ∈ RI1×I2×...×IN , denoted by ⟨A,B⟩, is defined in

a straightforward way as ⟨A,B⟩ def
=

∑
i1

∑
i2
. . .

∑
iN

ai1i2...ıN bi1i2...ıN . The Frobenius norm of a tensor

A ∈ RI1×I2×...×IN is then defined as ∥A∥F
def
=

√
⟨A,A⟩

Form the definition of the n-mode unfolding matrix, we have

∥A∥F = ∥(A)(n)∥F (4)

By using tensor decomposition, any tensor A can be expressed as the product

A = C ×1 U1 ×2 U2 . . .×N UN (5)
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where Un, n = 1, 2, . . . , N , is an orthonormal matrix and contains the ordered principal components for

the nth mode. C is called the core tensor. Unfolding the above equation, we have

A(n) = UnC(n)(UN ⊗ . . .⊗Un+1 ⊗Un−1 ⊗ . . .⊗U1)
T (6)

III. OVERVIEW OF COLOR IMAGES DISCRIMINANT MODEL

The motivation of the CID model[20][21] is to seek a meaningful color space and an effective

recognition method in an unified framework. The CID model involves two matrices: the color space

transformation matrix X for the color space and the discriminant projection matrix P for the image

discrimination. CID constructs two iterative procedures to solve the two matrices.

Let A be a color image of size I1 × I2, and let its three color components be R, G and B. Each

component is rasteriszed as I-dimensional vector, where I = I1×I2. Then, a color image A is expressed

as an I × 3 matrix: A = [R,G,B] ∈ RI×3 .

The goal of CID is to find a color space transformation matrix X to map a color image A from RGB

color space to a new color space, denoted by D-space, in which image representation D is the best

representation of the color image for face recognition.

D = AX = [R,G,B]X (7)

In CID, Eq.(7) is rewritten as follows:

dk = [R,G,B]xk, k = 1, 2, 3 (8)

where, X = [x1,x2,x3] and D = [d1,d2,d3]. dk is kth component in the D-space and xk consists of

optimal coefficients of dk.

Let C be the number of individuals, Ac
i be the ith color face image of cth individual, where c =

1, 2, . . . , C, i = 1, 2, . . . ,Mc, and Mc be the number of color face images of cth individual. The mean

image of the cth individual is

A
c
=

1

Mc

Mc∑
i=1

Ac
i (9)

and the mean image of all individuals is

A =
1

C

C∑
c=1

A
c (10)

Given a set of training color face images of individuals, CID builds on the LDA idea to seek the color

space transformation matrix X and the discriminant projection matrix P.
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Similar to LDA, CID defines the between-class scatter matrix Sb(xk) and the within-class scatter matrix

Sw(xk) in the D-space as follows:

Sb(xk) =

C∑
c=1

Pc

[
(A

c −A)xkx
T
k (A

c −A)T
]

(11)

Sw(xk) =

C∑
c=1

Pc
1

Mc − 1

Mc∑
i=1

[
(Ac

i −A
c
)xkx

T
k (A

c
i −A

c
)T
]

(12)

where Pc = Mc/M . The general Fisher criterion in the D-space can be defined as follows:

J(P,xk) =
|PTSb(xk)P|
|PTSw(xk)P|

(13)

where | · | denotes the determinant operator, and P is an I × d transformation matrix. CID defines the

general color-space between-class scatter matrix Lb(P) and the general color-space within-class scatter

matrix Lw(P) as follows:

Lb(P) =

C∑
c=1

Pc

[
(A

c −A)TPPT (A
c −A)

]
(14)

Lw(P) =

C∑
c=1

Pc
1

Mc − 1

Mc∑
i=1

[
(Ac

i −A
c
)TPPT (Ac

i −A
c
)
]

(15)

The following properties are proved in [20]:

tr
[
PTSb(xk)P

]
= xT

kLb(P)xk (16)

tr
[
PTSw(xk)P

]
= xT

kLw(P)xk = d (17)

These coefficient vectors xk are required to be Lw(P)-orthogonal, that is

xT
i Lw(P)xj = 0, ∀i ̸= j, i, j = 1, 2, 3. (18)

First, x1 and P are obtained in Algorithm 1. In Algorithm 1, x1 is the generalized eigenvector corre-

sponding to the largest eigenvalue of the matrix pencil (Lb(P),Lw(P)). The remaining two generalized

eigenvectors u1 and u2 are Lw(P)-orthogonal to x1. And the second combination coefficient vector x2

can be computed as follows:

x2 = (u1,u2)

 y1

y2

 = Uy (19)

In order to get x2, there are some small modifications in Step 3. Let x = Uy, Lw(P) = UTLw(P)U and

Lb(P) = UTLb(P)U. Last, z is the generalized eigenvector corresponding to the smallest eigenvalue of

the matrix pencil (Lb(P),Lw(P)). Then, we have x3 = Uz.
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Algorithm 1 CID Algorithm

Step 1: i = 0, and initialize x = x[0]

Step 2: Compute Sb(x), Sw(x) and calculate their generalized eigenvectors λ1, λ2, . . . , λd correspond-

ing to the d largest eigenvalues. Let P = P[i+1] = [λ1, λ2, . . . , λd].

Step 3: Compute Lb(P), Lw(P) and calculate their generalized eigenvector x
[i+1]
1 corresponding to

the largest eigenvalue.

if |J(P[i+1],x
[i+1]
1 )− J(P[i],x[i])| < ϵ then

the iteration terminates and let P∗ = P[i+1] and x∗ = x[i+1]

else

x = x[i+1] and go to Step 2

end if

IV. TENSOR DISCRIMINANT COLOR SPACE MODEL

A. The Algorithm

In this section, we discuss how to use tensor to model the discriminant color space. A color image is

naturally represented by a 3rd-order tensor. The 1-mode of tensor is the height of image, the 2-mode of

tensor is the width of image and the 3-mode of tensor is the color space of image. For instance, a RGB

color image of size I1 × I2 is expressed as a tensor A ∈ RI1×I2×I3 , where I3 = 3. The 3-mode of A is

the color variable in the RGB color space. It has 3 components, which corresponds to R, G and B in

RGB space.

Let C be the number of individuals, Ac
i be the ith color face image of cth individual, let Mc be

the number of color face images of cth individual. We use the TDCS algorithm to seek 2 discriminant

projection matrices U1 ∈ RI1×L1 , U2 ∈ RI2×L2 and a color space transformation matrix U3 ∈ RI3×L3

(usually L1 < I1, L2 < I2 and L3 ≤ I3) for transformation

Dc
i = Ac

i ×1 U
T
1 ×2 U

T
2 ×3 U

T
3 , i = 1, 2, . . . ,Mc, c = 1, 2, . . . , C. (20)

which ensures that the projected tensors of the same individual’s images are distributed as close as

possible, while the projected tensors of the images from different individuals are distributed as far away

as possible.

The mean image of the cth individual is

Ac
=

1

Mc

Mc∑
i=1

Ac
i (21)
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and the mean image of all individuals is

A =
1

C

C∑
c=1

Ac (22)

The between-class scatter of color images is defined as:

Ψb(A) =

C∑
c=1

∥Ac −A∥2F (23)

and within-class scatter of color images is defined as:

Ψw(A) =

C∑
c=1

Mc∑
i=1

∥Ac
i −Ac∥2F (24)

A reasonable idea is to maximize the between-class scatter of projected tensors Ψb(D) and to minimize

the within-class scatter of projected tensors Ψw(D). Then TDCS criterion can be defined as follows:

max J(U1,U2,U3) =
Ψb(D)

Ψw(D)
(25)

Here, three matrices Un need to be simultaneously optimized in maximizing the criterion function J .

We can define n-mode between-class scatter matrix S
(n)
b and n-mode within-class scatter matrix S

(n)
w as

following,

S
(n)
b =

C∑
c=1

(
A

c
(n) −A(n)

)
ŨnŨ

T
n

(
A

c
(n) −A(n)

)T
(26)

and

S(n)
w =

C∑
c=1

Mc∑
i=1

(
Ac

i(n) −A
c
(n)

)
ŨnŨ

T
n

(
Ac

i(n) −A
c
(n)

)T
(27)

where Ũn = UN ⊗ . . .⊗Un+1 ⊗Un−1 ⊗ . . .⊗U1, n = 1, 2, . . . , N and N = 3.

Then, the between-class scatter of the projected tensors Ψb(D) and the within-class scatter of the

projected tensors Ψw(D) can be rewritten as follows:

Ψb(D) =

C∑
c=1

∥Dc −D∥2F

=

C∑
c=1

∥
(
Ac −A

)
×1 U

T
1 ×2 U

T
2 ×3 U

T
3 ∥2F

(28)

and

Ψw(D) =

C∑
c=1

Mc∑
i=1

∥Dc
i −Dc∥2F

=

C∑
c=1

Mc∑
i=1

∥
(
Ac

i −Ac)×1 U
T
1 ×2 U

T
2 ×3 U

T
3 ∥2F

(29)
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According to the definition of the Frobenius norm for a tensor and that for a matrix, ∥A∥F = ∥A(n)∥F ,

and Eq. (6), Ψb(D) and Ψw(D) can be expressed using the equivalent matrix representation by n-mode

unfolding as follows:

Ψb(D) =

C∑
c=1

∥Dc
(n) −D(n)∥2F

=

C∑
c=1

∥UT
n

(
A

c
(n) −A(n)

)
Ũn∥2F

(30)

and

Ψw(D) =

C∑
c=1

Mc∑
i=1

∥Dc
i(n) −D

c
(n)∥2F

=

C∑
c=1

Mc∑
i=1

∥UT
n

(
Ac

i(n) −A
c
(n)

)
Ũn∥2F

(31)

Since ∥A∥F = tr(AAT ), Ψb(D) and Ψw(D) can be written in terms of the n-mode between-class scatter

matrix and n-mode within-class scatter matrix

Ψb(D) =

C∑
c=1

∥UT
n

(
A

c
(n) −A(n)

)
Ũn∥2F

=

C∑
c=1

tr

(
UT

n

(
A

c
(n) −A(n)

)
ŨnŨ

T
n

(
A

c
(n) −A(n)

)T
Un

)

= tr

{
UT

n

[
C∑
c=1

(
A

c
(n) −A(n)

)
ŨnŨ

T
n

(
A

c
(n) −A(n)

)T
]
Un

}

= tr
(
UT

nS
(n)
b Un

)
(32)

and

Ψw(D) =

C∑
c=1

Mc∑
i=1

∥UT
n

(
Ac

i(n) −A
c
(n)

)
Ũn∥2F

=

C∑
c=1

Mc∑
i=1

tr

(
UT

n

(
Ac

i(n) −A
c
(n)

)
ŨnŨ

T
n

(
Ac

i(n) −A
c
(n)

)T
Un

)

= tr

{
UT

n

[
C∑
c=1

Mc∑
i=1

(
Ac

i(n) −A
c
(n)

)
ŨnŨ

T
n

(
Ac

i(n) −A
c
(n)

)T
]
Un

}

= tr
(
UT

nS
(n)
w Un

)
(33)

So, given all the other projection matrices U1, . . . ,Un−1,Un+1, . . . ,UN , the TDCS criterion can be

written as follow:

max
tr

(
UT

nS
(n)
b Un

)
tr

(
UT

nS
(n)
w Un

) (34)
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According to Rayleigh quotient, Eq. (34) is maximized if and only if the matrix Un consists of the Ln

generalized eigenvectors corresponding to the largest Ln generalized eigenvalues of the matrix pencil

(S
(n)
b ,S

(n)
w ).

Since the S
(n)
b and S

(n)
w depend on U1, . . . ,Un−1,Un+1, . . . ,UN , we can see that the optimization of

Un depends on the projections in other modes. An iterative procedure can be constructed to maximize

Eq. (25). The pseudocode of the proposed method is summarized in Algorithm 2.

Algorithm 2 TDCS
INPUT: a set of M labeled tensor samples Ac

i , i = 1, 2, . . . ,Mc, c = 1, 2, . . . , C. the number of

reduced dimensions Ln, n = 1, 2, 3

OUTPUT: a set of projected tensors Dc
i and 2 discriminant projection matrices U1 ∈ RI1×L1 , U2 ∈

RI2×L2 and a color space transformation matrix U3 ∈ RI3×L3

Algorithm:

Initialize Un with a set of identity matrices

Calculate the mean image of the cth individual Ac and the mean image of all individuals A by Eq.

(21) and Eq. (22)

repeat

for n = 1 to 3 do

Calculate S
(n)
b and S

(n)
w by Eq. (26) and Eq. (27)

The protection matrix Un = [u1,u2, . . . ,uLn
] consists of the Ln generalized eigenvectors

corresponding to the largest Ln generalized eigenvalues of the matrix pencil (S(n)
b ,S

(n)
w ).

end for

Calculate Jk+1 by Eq. (25)

until |Jk+1 − Jk| < ϵ

Compute a set of projected tensors Dc
i by Eq. (20)

B. Performance analysis of TDCS

Before analyzing the performance of TDCS, we investigate the relations between CID and TDCS,

and see how to get the first column vector x1 of the color space transformation matrix X using TDCS.

The A(3), a 3-mode unfolding matrix of a color image A, has 3 rows which correspond to three color

components R, G and B.

A(3) = [R,G,B]T = AT (35)
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where A is the color image matrix in CID. And it can also be considered as a 2nd-tensor in vector

space RI×3, where I = I1 × I2. Then, the problem turns into seeking a discriminant projection matrix

U1 ∈ RI×d and a color space transformation matrix U2 ∈ R3×1 to transform:

D = A×1 U
T
1 ×2 U

T
2 (36)

In TDCS, the two initial values are provided for U1 and U2. Then S
(1)
b is calculated by using Eq. (26):

S
(1)
b =

C∑
c=1

(
A

c
(1) −A(1)

)
Ũ1Ũ

T
1

(
A

c
(1) −A(1)

)T

=

C∑
c=1

(
A

c −A
)
U2U

T
2

(
A

c −A
)T (37)

Replacing U2 with x1 in the above equation, we have:

S
(1)
b =

C∑
c=1

(
A

c −A
)
x1x

T
1

(
A

c −A
)T

(38)

By comparing the above equation with Eq. (11), we find that the only difference is the coefficient Pc.

Similarly, the S
(1)
w is calculated by using Eq. (27):

S(1)
w =

C∑
c=1

Mc∑
i=1

(
Ac

i(1) −A
c
(1)

)
Ũ1Ũ

T
1

(
Ac

i(1) −A
c
(1)

)T

=

C∑
c=1

Mc∑
i=1

(
Ac

i −A
c)

U2U
T
2

(
Ac

i −A
c)T (39)

Replacing U2 with x1 in the above equation, we have:

S(1)
w =

C∑
c=1

Mc∑
i=1

(
Ac

i −A
c)

x1x
T
1

(
Ac

i −A
c)T (40)

Comparing the above equation with Eq. (12), we find that the only difference is the coefficient Pc
1

Mc−1 .

We draw that S
(1)
b

S
(1)
w

is equivalent to Sb

Sw
in CID, so the U1 obtained by solving the generalized eigenvalue

problem (S
(1)
b ,S

(1)
w ) is equivalent to the discriminant matrix P obtained by solving the generalized

eigenvalue problem (Sb,Sw) in CID. Similarly, S
(2)
b

S
(2)
w

is equivalent to Lb

Lw
in CID, so the U2 obtained

by solving the generalized eigenvalue problem (S
(2)
b ,S

(2)
w ) is equivalent to x1 obtained by solving the

generalized eigenvalue problem (Lb,Lw) in CID. The x1 and P are obtained by repeatedly using the

above procedure. From the above analysis, we can see that a color image in DTCS is unfolded on 3-mode

in CID. The unfolded operator rasterizse each component in color space as I-dimensional vector, where

I = I1 × I2.

Furthermore, we analyze the underlying reason why TDCS can perform better than CID. One reason

is that TDCS extracts all discriminant information and CID only extracts a part of the discriminant
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information. In CID, the between-class scatter matrix Sb(xk) and the within-class scatter matrix Sw(xk)

are the two matrices with size of I × I . By using linear algebra, we have rank(Sb(xk)) = C − 1

and rank(Sw(xk)) =
∑C

c=1(Nc − 1). Generally, the number of pattern classes C and the number of

all samples are far less than I , so the two matrices Sb(xk) and Sw(xk) are singular. In this case, the

generalized eigenvalue problem (Sb,Sw) can not directly be solved. For releasing this problem, PCA is

applied to reduce dimensionality such that Sw(xk) is nonsingular, followed by LDA for classification.

However, one potential problem is that the PCA criterion may not be compatible with the LDA criterion;

thus, some information, which may contain the most discriminant information, are thrown away in the

PCA step [32], [33]. In contrast to CID, TDCS divides Sw(xk) with I × I size into two matrices S
(1)
w

with I1 × I1 size and S
(2)
w with I2 × I2 size. When

∑C
c=1(Nc − 1) ≥ max(I1, I2), we ensure that S(1)

w

and S
(2)
w are non-singular. Furthermore, if C ≥ max(I1, I2), then S

(1)
b and S

(2)
b are full rank. In this case,

all discriminant information are extracted.

The other reason is that the three column vectors of the color space transformation matrix are optimized

simultaneously. In CID, the discriminant projection matrix P and the first column vector x1 are optimized

in the first procedure. In the second procedure, then, the matrix P and the second column vector x2 are

optimized. The two procedures are mutually independent except for the result P in the first procedure

as the input for the second procedure. Thus, it is uncertain whether P is optimal with x1, because it

has been optimized and changed with x2 on the second procedure. Furthermore, this also raises doubts

on whether x1 and x2 are optimal as well. In TDCS, however, the 3 matrices U1, U2 and U3 are

optimized simultaneously. The color space transformation matrix U3 in TDCS is prior to the color space

transformation matrix X in CID.

To sum up, TDCS gets not only more discriminant information but also better color space transforma-

tion matrix than CID. Therefore, TDCS has better performance than CID.

C. Efficiency analysis of TDCS

In this section, we analyze the efficiency of TDCS from two aspects, the number of iterations and the

time complexity of each iteration. In order to compare the number of iterations, we reveal that the two

criterion functions of CID and TDCS are equivalent to each other.
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We replace Sb(xk) in Eq. (13) with Eq. (11), the numerator of Eq. (13) can be rewritten as:

∣∣PTSb(xk)P
∣∣ = ∣∣∣∣∣PT

C∑
c=1

Pc

[
(A

c −A)xkx
T
k (A

c −A)T
]
P

∣∣∣∣∣
=

∣∣∣∣∣
C∑
c=1

Pc

[
(PTA

c
xk −PTAxk)(P

TA
c
xk −PTAxk)

T
]∣∣∣∣∣

=

∣∣∣∣∣
C∑
c=1

Pc∥PTA
c
xk −PTAxk∥F

∣∣∣∣∣
(41)

Because a matrix is a 2nd-order tensor, the above equation can be rewritten using n−mode product of a

tensor by a matrix,

∣∣PTSb(xk)P
∣∣ = ∣∣∣∣∣

C∑
c=1

Pc∥A
c ×1 P×2 xk −A×1 P×2 xk∥F

∣∣∣∣∣ (42)

Similarly, the numerator of Eq. (25) be rewritten as following:

Ψb(D) =

C∑
c=1

∥Dc −D∥2F

=

C∑
c=1

∥Ac ×1 U
T
1 ×2 U

T
2 ×3 U

T
3 −A×1 U

T
1 ×2 U

T
2 ×3 U

T
3 ∥2F

(43)

Comparing the above two equations, we find that the differences are only a set of coefficients Pc and

the number of the order. Similarly, the differences between the denominators of Eq. (13) and Eq. (25)

are a set of coefficients Pc
1

Mc−1 and the number of order. Therefore, the criteria of CID and TDCS are

equivalent to each other. On the basis of that, the number of iterations will be compared in Section V-C.

Next, we investigate the time complexity of each iteration of the two algorithms. For each iteration

of CID, we need to solve two generalized eigenvector problems (Sb(x),Sw(x)) and (Lb(P),Lw(P)).

They require about 14(I1 × I2)
3 and 14 × 33 floating-point multiplications, respectively[34]. In TDCS,

solving three generalized eigenvector problems (S
(n)
b ,S

(n)
w ) (n = 1, 2, 3) require about 14× I31 , 14× I32

and 14× 33 floating-point multiplications, respectively. In these two algorithms, the time complexity for

calculating each scatter matrix is O((I1 × I2)
2). From the above analysis, we can draw that the time

complexity of an iteration in CID is O((I1 × I2)
3) and that in TDCS is O((I1 × I2)

2). So, the time

complexity of an iteration in TDCS is one order of magnitude less than that in CID.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 2. Sample images of one individual from the AR database.

V. EXPERIMENTS AND RESULTS

A. Database

We conducted the experiments on two well-known color face databases AR[35] and Georgia Tech face

databases 1.

The AR database contains over 4,000 color face images of 126 people (70 men and 56 women). In the

experiments, we selected 100 people (50 men and 50 women) of them. Images are frontal view faces with

different facial expressions, illumination conditions, and occlusions (sun glasses and scarf). The pictures

were taken under strictly controlled conditions. No restrictions on wear (clothes, glasses, etc.), make-up,

hair style, etc. were imposed to participants. Each individual participated in two sessions, separated by

two weeks (14 days). The same pictures were taken in both sessions. The 14 images of each individual

are selected and the occluded face images are excluded in our experiment. All images are cropped into

32 × 32 pixels. The sample images for one individual of the AR database are shown in Fig. 2, where

Fig. 2(a)-Fig. 2(g) are from the first session as the training set, and Fig. 2(h)-Fig. 2(n) are from the

second session as the testing set.

Georgia Tech face database contains images of 50 individuals taken in two or three sessions at different

times. Each individual in the database is represented by 15 color JPEG images with cluttered background

taken at resolution 640×480 pixels. The average size of the faces in these images is 150×150 pixels. The

pictures show frontal and/or tilted faces with different facial expressions, lighting conditions and scale.

1http://www.anefian.com/research/face reco.htm
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 3. Sample images of one individual from the Georgia Tech database (non-aligned head images).

Each image is manually cropped and resized to 32× 32 pixels. The sample images for one individual of

the Georgia Tech database are showed in Fig. 3.

B. Experiment setting

For the purpose of evaluating the performance of TDCS, we use face verification rate as the criteria.

The FERET Verification Testing Protocol [36] recommends using the receiver operating characteristic

(ROC) curves to depict the relations between the face verification rate (FVR) and the false accept rate

(FAR). In our experiments, the Euclidean distance is used to generate the score matrix. The ROC curves

are plotted by the Statistical Learning Toolbox2 using the score matrix. For tensor operations, we used

the tensor toolbox developed by Bader and Kolda in MATLABTM[37]. All experiments are conducted on

2The slverifyroc function in the Statistical Learning Toolbox can only plot the ROC curve illustrating the relations of the

false reject rate versus the FAR. We modified it to depict the relations between the FVR and the FAR.
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Fig. 4. Illustration of the convergence of the TDCS algorithm and the CID algorithm.

a 2.66 GHz Intel PC with 16 GB memory, with the Microsoft Windows XP 64 bits as OS.

C. Convergence and time complexity

Firstly, the comparisons between the number of iterations in TDCS and that of CID are drawn on

all images of the first session in AR database. The convergence threshold ϵ is set as 0.1 for the two

algorithms. For CID, the x1 is initialized as [13 ,
1
3 ,

1
3 ]

T in the first procedure and the y is initialized

as [1, 0]T in the second procedure. Fig. 4 illustrates the convergence of the TDCS algorithm and the

two procedures of the CID algorithm. That the criterion functions of CID and TDCS are equivalent to

each other has been analyzed theoretically in Section IV-C. From Fig. 4, we can see that the difference

between the convergences of consecutive procedures. The first procedure of CID still hasn’t reached the

convergence threshold after 20 iterations. The convergence threshold is reached in the 19th iteration on

the second procedure of CID; whereas TDCS only needs 3 iterations to reach the same convergence

threshold. The number of all iterations in the two procedures of CID is more than 7 times as many as

that of TDCS.
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Secondly, we compare TDCS with CID with respect to time efficiency issue on the database introduced

above using the various sizes. In order to avoid getting into an infinite iteration, the procedure will be

stopped, when the number of iteration reach 20 and the convergence threshold is not reached. Table. I

lists the cost times, the number of iterations and the convergence values of the both algorithms on the

various sizes. In the first procedure of CID, the convergence threshold is not reached on all sizes. In the

second procedure, It is reached on 16 × 16, 32 × 32 and 40 × 40, respectively. Even so, TDCS only

needs about 2 or 3 iterations to converge. On the size of 16×16, the cost time of CID is 50 seconds and

that of TDCS is only 7 seconds. When the size is 56 × 56, the cost time of CID dramatically rises to

19,434 seconds, whereas that of TDCS slowly rises to 77 seconds. The experimental results are consistent

with our time complexity analysis in Section IV-C. Therefore, the efficiency of the proposed algorithm

is better than that of CID.

TABLE I

COMPARISON OF TDCS AND CID WITH RESPECT TO THE COST TIME AND THE TIMES OF ITERATION

size 16× 16 24× 24 32× 32 40× 40 48× 48 56× 56

cost time of CID (s) 50 360 1814 4296 10090 19434

the times of iteration in CID’s the 1st procedure 20 20 20 20 20 20

the convergence value in CID’s the 1st procedure 5.07 1.83 1.17 0.61 0.19 0.25

the times of iteration in CID’s the 2nd procedure 15 20 19 18 20 20

the convergence value in CID’s the 2nd procedure 0.09 0.22 0.09 0.07 0.12 0.09

cost time of TDCS (s) 7 10 20 36 66 77

the times of iteration in TDCS 3 3 3 3 3 2

the convergence vale in TDCS 0.002 0.01 0.02 0.06 0.04 0.05

D. Experiments and results on the AR database

In this experiment, we train TDCS model and CID model by using 700 color face images from the

first session in AR database and test them by all images in the second session. The convergence threshold

ϵ is set as 0.1 and x1 is initialized as [13 ,
1
3 ,

1
3 ]

T . In this case, we get two color space transformation

matrices:

X =


−0.1839 0.2519 0.6209

0.2059 0.5019 −1.0355

−1.0000 −0.9629 0.4391

 (44)
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and

U3 =


−0.0840 0.2640 0.4363

0.2931 0.5008 −0.8141

−0.9524 −0.8243 0.3832

 (45)

Using the two matrices, we get 3 color components D1, D2, D3 of CID and 3 color components T1,

T2, T3 of TDCS. These components are illustrated in Fig. 5.

Meanwhile, we conduct LDA and 2D-LDA on corresponding gray images. Because there are 100

individuals in the AR database, only 99 discriminant projection basis vectors are extracted in LDA

and CID. For 2D-LDA and TDCS, the two numbers of the spatial reduced dimensions are 10 and 10,

respectively. The ROC curves of the four methods are shown in Fig. 6. The results indicate that the

TDCS is more effective for improving the AR performance than other three algorithms. The curves also

show that the 20 discriminant projection basis vectors in TDCS contain more discriminant information

than 100 ones in CID. It is coincided with our performance analysis in Section IV-B. Fig. 6 also shows

that CID outperforms 2D-LDA, which illustrates that choosing an optimal color space is more important

than keeping spatial structure for recognizing color face images.

Another experiment is conducted as followed. In the experiment, all color images are transformed into

one color component using the first column vector of U3 and x1 to get two color spaces with the first

color component. The 2D-LDA is implemented on the first color component of two color spaces and

gray images. The results are shown in Fig. 7. It is interesting that the curves for TDCS and CID are

superposed practically. Intuitively, the image generated by the first component of CID (see Fig. 5(g))

is very similar to the one generated by the first component of TDCS (see Fig. 5(d)). The results are

consistent with our theoretical analysis of the relations between TDCS and CID in section IV-B.

E. Experiments and results on the Georgia Tech face database

Georgia Tech face database is more complex than AR database, because it contains various pose faces

with different expressions on cluttered background. In this experiment, we use the first 8 images of each

individual as the training set and the remain as the testing set. The TDCS model and CID model are

trained and we get two color space transformation matrices:

X =


−1.0000 0.4894 0.4076

0.8473 0.3595 −1.0134

−0.2767 −1.0401 0.5332

 (46)
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(a) R (b) G (c) B

(d) T1 (e) T2 (f) T3

(g) D1 (h) D2 (i) D3

Fig. 5. Illustration of R, G, and B color components and the various components generated by CID and TDCS on the AR face

database.
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Fig. 6. ROC curves of TDCS, CID, 2D-LDA and LDA on AR face database.

and

U3 =


0.1067 −0.3004 0.6192

0.7589 0.7798 −0.7852

−0.6424 −0.5492 0.0080

 (47)

The two matrices are not the same as Eq. (44) and Eq. (45) due to the different training sets. Using the

two matrices, we get 3 color components D1, D2, D3 of CID and 3 color components T1, T2, T3 of

TDCS. These components are illustrated in Fig. 8.

With 50 individuals in the Georgia Tech database, the 49 discriminant projection basis vectors are

extracted in LDA and CID. For 2D-LDA and TDCS, the two numbers of the spatial reduced dimensions

are 10 and 10, respectively. The ROC curves of the four methods are solid lines in Fig. 9. The results

indicate that TDCS has the best performance compared to the other three algorithms. As shown in Fig. 6,

TDCS is better than CID, especially in a complicated face database with different poses as portrayed in

Fig. 9.

Similarly, The 2D-LDA is implemented on the first color components of two color spaces and gray

images. The results are shown in Fig. 10, in which the three curves are almost consistent. It reveals that
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Fig. 7. ROC curves of 2D-LDA on the first component of TDCS, CID and gray images on the AR face database.

one color component is not enough for the discrimination of color images in more complex case.

Lately, all images in the Georgia Tech database are manually aligned (two eyes were aligned at the

same position), cropped, and then re-sized to 32 × 32 pixels. In the cropped images shown in Fig. 11,

we retain as much of the facial region as possible, thereby eliminating most of the non-facial regions.

The experiments with the same setting are conducted on them. The ROC curves of the four methods are

dash-dot lines in Fig. 9. It is interesting that the two ROC curves of TDCS of the head images and the

facial images are overlapped and the two ROC curves of 2D-LDA have the same manner because they

maintain the spatial structure information of images. Whereas, the corresponding two ROC curves of

other two algorithms have distinctions which indicate that TDCS is more robust than CID for the head

and face images.

VI. CONCLUSION

The paper presents a novel color space model by learning from the training samples borrowing the

idea from DATER. The model is named the tensor discriminant color space (TDCS) which optimizes

one color space transformation matrix and two discriminant projection matrices simultaneously. And we
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(a) R (b) G (c) B

(d) T1 (e) T2 (f) T3

(g) D1 (h) D2 (i) D3

Fig. 8. Illustration of R, G, and B color components and the various components generated by CID and TDCS on the Georgia

Tech face database.
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CID on RGB head
2D−LDA on Gray head
LDA on Gray head
TDCS on RGB face
CID on RGB face
2D−LDA on Gray face
LDA on Gray face

Fig. 9. ROC curves of TDCS, CID, 2D-LDA and LDA on the Georgia Tech face database.

analyze the relations and distinctions between TDCS and CID, theoretically. The experiments on the AR

and Georgia Tech color face database have been systematically performed. Their results reveal a number

of interesting remarks:

1) Theoretically, the time complexity of each iteration in CID is O((I1 × I2)
3) and that in TDCS is

O((I1 × I2)
2). From the experiment, moreover, we can observe that the number of all iterations

of CID is more than 7 times as many as that of TDCS. Therefore, the efficiency of our proposed

algorithm is better than that of CID.

2) The TDCS model can achieve the optimal discriminating color space and the optimal spatial

transformation matrix simultaneously.

3) The TDCS outperforms CID, especially in more complex face database such as the Georgia Tech

face database.

4) One color component is not enough for the discrimination of color images in more complex cases.

5) TDCS is more robust for the face and head images, because it keeps spatial structure information

of color images.
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Fig. 10. ROC curves of 2D-LDA on the first component of TDCS, CID and gray images on the Georgia Tech face database.

However, some theoretical justification for the convergence of the algorithm is still missing. Discussions

on the convergence of the algorithm in theory will be our future work.
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