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Abstract—Micro-expressions are brief involuntary facial ex-
pressions that reveal genuine emotions and, thus help detect
lies. Because of their many promising applications, they have
attracted the attention of researchers from various fields. Recent
research reveals that two perceptual color spaces (CIELab and
CIELuv) provide useful information for expression recognition.
This paper is an extended version of our International Conference
on Pattern Recognition (ICPR) paper [1], in which we propose a
novel color space model, Tensor Independent Color Space (TICS),
to help recognize micro-expressions. In this paper, we further
show that CIELab and CIELuv are also helpful in recognizing
micro-expressions, and we indicate why these three color spaces
achieve better performance. A micro-expression color video clip is
treated as a fourth-order tensor, i.e., a four-dimension array. The
first two dimensions are the spatial information, the third is the
temporal information, and the fourth is the color information.
We transform the fourth dimension from RGB into TICS, in
which the color components are as independent as possible.
The combination of dynamic texture and independent color
components achieves a higher accuracy than does that of RGB.
In addition, we define a set of Regions of Interest (ROIs) based
on the Facial Action Coding System (FACS) and calculated
the dynamic texture histograms for each ROI. Experiments
are conducted on two micro-expression databases, CASME and
CASME 2, and the results show that the performances for TICS,
CIELab and CIELuv are better than those for RGB or gray.

Index Terms—Micro-expression recognition, Color Spaces,
Tensor Analysis, Local Binary Patterns, Facial Action Coding
System.
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I. INTRODUCTION

Micro-expressions are brief facial expressions that reveal
the emotions that a person tries to conceal, especially in
high-stakes situations [2][3]. Compared with normal facial
expressions, micro-expressions have three significant charac-
teristics. They are of short duration, and low intensity and are
generally fragments of prototypical facial expressions. Micro-
expressions are generally known for their potential use in many
fields, such as clinical diagnosis [4], national security [5] and
interrogations [6], because they may reveal genuine emotions
and thus help detect lies. The polygraph is invasive because
it must be connected to the individual’s body throughout the
session [7]. Thus, individuals are aware that they are being
monitored and may develop countermeasures. In comparison,
lie detection based on micro-expressions is unobtrusive, and
the individuals being observed are less likely to develop
countermeasures.

More than 30 years ago, psychologists began to show inter-
est in micro-expressions. Haggard and Isaacs first discovered
micro-expressions (micro-momentary expressions) and viewed
them as cues for repressed emotions [8][9]. In 1969, Ekman
analyzed a video of an interview with a patient, who was
suffering from depression and had tried to commit suicide,
and observed micro-expressions. Since that time, Ekman’s
group has conducted many studies on micro-expressionds
[10]. According to Ekman, micro-expressions are the most
promising approach for detecting deception [3].

Although micro-expressions have potential application in
a variety of fields, humans have difficulty in detecting and
recognizing them. This difficulty may be the result of their
short duration, and low intensity in addition to fragmental
action units [2][11]. Although there is debate regarding their
duration, the generally accepted limit is 0.5 seconds [11][12].
Micro-expressions are usually very subtle because individuals
try to control and repress them [11]. In addition, micro-
expressions usually exhibit only parts of the action units of
fully-stretched facial expressions. For example, only the upper
face or lower face may show action units, not both at the
same time as in macro-expressions [13]. To improve human
performance in recognizing micro-expressions, Ekman [14]
developed the Micro-Expression Training Tool (METT), which
trains people to better recognize seven categories' of micro-
expressions. Due to the increasing power of computers and the
overwhelming quantity of expressions to monitor, researchers
have turned to automatic micro-expression recognition.

However, there are few papers addressing micro-expression
recognition. Polikovsky ef al. [15] used a 3D-gradient de-
scriptor for micro-expressions recognition. Wang et al. [16]

'Contempt was added besides the basic six emotions



treated a micro-expression gray-scale video clip as a 3rd-
order tensor and used Discriminant Tensor Subspace Analysis
(DTSA) and Extreme Learning Machine (ELM) to recognize
micro-expression. However, the subtle movements of micro-
expressions may be lost in the process of solving DTSA.
Pfister et al. [17] used a Temporal Interpolation Model (TIM)
based on Laplacian matrix to normalize the frame numbers
of micro-expression video clips. Then, the LBP-TOP [18]
was used to extract the motion and appearance features of
micro-expressions and multiple kernel learning was used for
classification.

The LBP operator has been widely used in ordinary texture
analysis. It efficiently describes the local structures of images,
and in recent years, has aroused increasing interests in many
areas of image processing and computer vision, exhibiting its
effectiveness in a number of applications. Recently, research
on LBP has flourished. Tan and Triggs [19] developed a
generalization of the local texture descriptor named as Local
Ternary Pattern (LTP) for face recognition, which is more
discriminative and less sensitive to noise in uniform regions.
Zhu et al. [20] divided P neighbors into [P/4] groups and
calculated an LBP histogram for each group including at most
4 points. The lines connecting two neighboring points to the
central point are orthogonal. They named the method as the or-
thogonal combination of local binary patterns (OC-LBP). The
objective of OC-LBP is to reduce the dimensionality of the
original LBP operator while keeping its discriminative power
and computational efficiency. The authors also proposed six
new local descriptors based on OC-LBP enhanced with color
information for image region description. The main idea is to
independently calculate the original OC-LBP descriptor over
different channels in a given color space, and then concatenate
them to obtain the final color OC-LBP descriptor [20]. Lee
et al. [21] presents a novel expression recognition method
that exploits the effectiveness of color information and sparse
representation.

Color is a fundamental aspect of human perception,
and its effects on cognition and behavior have intrigued
generations of researchers [22]. Recent research -efforts
[23][24][25](26][27]1[28] revealed that color may provide use-
ful information for face recognition. In [23], it is also revealed
that the face recognition system for various color spaces (such
as RGB, PCS and YIQ) is better than for gray images. Liu
[24] applied PCA, ICA and LDA to obtain the uncorrelated
color space (UCS), the independent color space (ICS), and
the discriminating color space (DCS) for face recognition,
respectively. In [25], the authors took advantage of the ICS
to improve performance of the Face Recognition Grand Chal-
lenge (FRGC) [29]. Yang and Liu proposed [26] the Color
Image Discriminant (CID) model borrowing the idea of LDA
to not only obtain the discriminative color space but also to
obtain the optimal spatial transformation matrix. Wang et al.
[27] presented a Tensor Discriminant Color Space (TDCS)
model that uses a 3rd-order tensor to represent a color facial
image. To make the model more robust to noise, they [28] also
used an elastic net to propose a Sparse Tensor Discriminant
Color Space (STDCS). Lajevardi and Wu [30] also treated a
color facial expression image as a 3rd-order tensor and showed
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that the perceptual color spaces (CIELab and CIELuv) are
better overall than other color spaces for facial expression
recognition.

When the emotional and physiological states of humans
change, the facial skin color hue subtly changes, due to
variations in the levels of hemoglobin and oxygenation under
the skin. Ramirez et al. [31] showed that facial skin color
changes can be used to infer the emotional state of a person
in the valence dimension with an accuracy of 77.08%. We
infer that when different micro-expressions occur, the facial
skin color hues are also different. Given such a consideration,
facial color information could help improve micro-expression
recognition.

This paper is an extended version of our International
Conference on Pattern Recognition (ICPR) paper [1], in which
we propose a novel color space model, Tensor Independent
Color Space (TICS), to help recognize micro-expressions. In
this paper, we further show that CIELab and CIELuv are
also helpful in recognizing micro-expressions. In these color
spaces, LBP-TOP is used to extract the dynamic texture fea-
tures of micro-expression clips from three color components.
Then, the histograms of the LBP-TOP codes are concatenated
as a long feature vector, which is treated as the input of
SVM to recognize micro-expressions. The results in TICS
are slightly better than those in CIELab and CIELuv. A key
difference with CIELab and CIELuv is that TICS is modeled
by learning from samples. The three color components in
TICS are as independent from each other as possible. We
use the mutual information to explain why TICS, CIELab and
CIELuv achieve better performance than the RGB color space.
In addition, we use tensors to generalize LBP-TOP to a higher-
dimensional space, and propose Tensor Orthogonal LBP (TO-
LBP). We also show LBP-TOP is a special case of TO-LBP
in 3D space.

The rest of this paper is organized as follows: in Sec-
tion II, we briefly review the fundamentals of tensors and
the perceptual color spaces; in Section III, we present the
Tensor Independent Color Space model (TICS); in Section
IV, we introduce LBP-TOP, which is used to extract the
dynamic texture features of micro-expression clips from three
components in TICS; in Section V, we design 16 Region of
Interests (ROIs) based on Action Units; in Section VI, we
describe the micro-expression recognition framework based
on TICS and LBP-TOP; in Section VII, the experiments are
conducted on two micro-expression databases CASME and
CASME 2, the results showing the efficiency and performance
of TICS; finally in Section VIII, conclusions are drawn and
several issues for future work are discussed.

II. BACKGROUND
A. Tensor Fundamentals

A tensor is a multidimensional array. It is the higher-order
generalization of a scalar (zero-order tensor), vector (1st-order
tensor), and matrix (2nd-order tensor). In this paper, lowercase
italic letters (a, b, ...) denote scalars, bold lowercase letters (a,
b, ...) denote vectors, bold uppercase letters (A, B, ...) denote
matrices, and calligraphic uppercase letters (A, B, ...) denote
tensors. The formal definition is given below[32]:
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Definition 1. The order of a tensor A € RI1 <12 xIN jg N
An element of A is denoted by A; i, iy O Giyiy. iy, Where
1<i,<I,n=1,2,...,N.

Definition 2. The n-mode vectors of A are the I,,-dimensional
vectors obtained from A by fixing every index but index i,

Definition 3. The n-mode unfolding matrix of A, denoted
by (A)m) € R} (T dn—alnt1-XIN) - contains the element
a;,...iy at the ip,th row and jth column, where

k—1

I

m=1,m#n

(D

We can generalize the product of two matrices to the product
of a tensor and a matrix.

N
=1+ Y (ix—1)Jk,  with

k=1,k#n

Ji =

Definition 4. The n-mode product of a tensor A €
RO xI2XXIN hy g matrix U € R7»*In, denoted by A x,, U,
isan (I1 x Io X ... X Ip_1 X Jp X Ins1 X ... X In)-tensor
for which the entries are given by:

(Ax,U) 4
nY)itis.in_1jnint1...in Qivig..in—1inint1.in Winin -

i’Vl
(2)
Definition 5. The scalar product of two tensors A,B €
RIx 12X XIN - denoted by (A, B), is defined in a straightfor-
ward way as (A,B) < Diy Dy e+ Qi Qininin Diia. i
The Frobenius norm of a tensor A € RV} 12XXIN g thepn

defined as | Al|lp £ \/(A, A

B. Perceptual Color Spaces

In this section, we introduce two perceptual color spaces:
CIELab, and CIELuv, which can enhance the performance
of expression recognition [30]. In computer vision, the most
widely used color space is RGB color space, which is the basis
for other color spaces (such as YCbCr, CIELab, and CIELuv)
that are usually defined by its linear or nonlinear transforma-
tions. To reduce the lighting effect, the RGB color space is
usually normalized, and denoted as (R orm, Grorm, Bnorm)-

To convert from RGB to perceptual color spaces (CIELab
or CIELuv), the RGB color space is first converted to the
CIE XYZ color space, which is the basis for conversion to
perceptual color spaces. The component L is the same for
both the CIELab and CIELuv color spaces. The component
L indicates lightness and is independent of the other two
components. The conversion procedure is as follows [30]:

X 0.431 0.342 0.178] [Ruorm

Y| =10222 0707 0.071] |Gnorm 3)
Z 0.020 0.130 0.939| | Brorm

116 x ()5 =16, 3 > 0.008856 @
903 x (), + < 0.008856

X Y
= —) = f( 5
o =500 ($(5) - 1)) ®)

b = 200 x (f(y)—f(Z)> (6)

where X,,, Y,,, and Z,, are reference white tristimulus values,
which are defined in the CIE chromaticity diagram [33] and

t > 0.008856

1
t3
t) = ’ 7
1® {7.787><t+11166, t < 0.008856 M

For the u and v color components, the conversion is defined
by

u=13xLx(u'—ul) and v =13xLx(v'—v)). (8)

The equations for v’ and v’ are given below

4X )

= and 9Y
T X +15Y +32 v

!/ —_
u T X +15Y +37
)

The quantities u/, and v}, are the (u’,v’) chromaticity coordi-

nates of a specified white object and are defined by

, 4X, , 9Y,,

"= X, + 15Y,32, T X, +15Y, + 32,

(10)
In Section VII, we will show that the mutual information

among each component in CIELab (or CIELuv) is small, and

this will explain why perceptual color spaces are better than

RGB for micro-expression recognition.

U and

III. TENSOR INDEPENDENT COLOR SPACE (TICS)

Unlike CIELab and CIELuv, Tensor Independent Color
Space (TICS) is not a fixed linear or nonlinear transformation
of RGB. Its transformation matrix is obtained by learning from
the provided samples. A color micro-expression video clip
is naturally represented by a 4th-order tensor, where mode-1
and mode-2 of a tensor are facial spatial information, mode-
3 is the temporal information and mode-4 is the color space
information. For instance, a color micro-expression video clip
with a resolution of I; x Iy is represented as a tensor X €
RIxI2xIsxIs where I; is the number of frames and I, = 3
has 3 components corresponding to R, G and B in RGB
space. However, the R, G and B components are correlated. If
we can transform the three correlated components into a series
of uncorrelated components T, Ty and T3, and extract the
dynamic texture features from each uncorrelated component,
we can obtain better results.

Given the assumption that M is the number of color micro-
expression video clips, A is the ¢th color micro-expression
video clip. We want to seek a color space transformation
matrix Uy € RI+*L1 (usually Ly = I,) for transformation

Vi =X; x4 UL,

11
1=1,2,..., M. an

such that the components of mode-4 of )); are as independent
as possible. To obtain Uy, we use ICA 2 to decorrelate the
RGB color space. M 4th-order tensor X; are concatenated to a
5th-order tensor F € RI1x12x13x14xM The mode-4 unfolding
matrix F(4) is a 3 x K matrix, where K = I X Iy x I3 x M
and the three rows of F (4 correspond to the three components
in RGB space.

2For ICA operations, we used Hyvarinen’s fixed-point algorithmhttp://www.
cis.hut.fi/projects/ica/fastica/.
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Fig. 1. Example of a basic LBP operator.

The color space transformation matrix U, may be derived
using ICA on F4). The ICA of F 4 factorizes the covariance
matrix X into the following form:

Yp=U;vu; (12)

where v € R3*3 is diagonal real positive and U, transforms
RGB color space to a new color space whose three components
are independent or the most possible independent. Uy in
Eq. (12) may be derived using Comon’s ICA algorithm by
calculating mutual information and higher-order statistics [34].

IV. LBP DESCRIPTION FROM THREE ORTHOGONAL
PLANES

Local Binary Patterns (LBPs) [35] are used on gray images
to extract texture features. Given a pixel c in the gray image, its
LBP code is computed by comparing it with its P neighbors
p. The neighbors lie on a circle with center ¢ and a radius
equal to R.

P—-1
LBPpr=Y_ s(gp— gc)2"

p=0

13)

where g is the gray value of the given pixel ¢, g, is the value
of its neighbor p, and s(u) is 1 if v > 0 and O otherwise.
If the coordinates of ¢ are (z.,y.), the coordinates of p are
(xc + Reos(2wp/ P), y. — Rsin(2mp/ P)). The coordinates of
the neighbors that do not fall exactly on pixels are approxi-
mated by bilinear interpolation. The LBP encoding process is
illustrated in Fig. 1. It is possible to use only a subset of 2P
binary patterns to describe the texture of the images. Ojala et
al. named these patterns uniform patterns. An LBP is called
uniform, if it contains at most two bitwise transitions from O to
1 or vice versa when the corresponding bit string is considered
circular.

After the LBP of each pixel is coded, a histogram is
calculated to represent the texture

I J
H(k)=> > f(LBPpg,k),k€[0,K) (14)

i=1 j=1

where K is the number of LBP pattern values, and I and J
are the height and width of the image, respectively. f(x,y) is
1 if z = y and O otherwise.

The LBP is defined on a gray image, which is treated
as a 2D object. To extract the dynamic texture of a 3D
object (such as a gray micro-expression video clip), a dynamic
LBP description from three orthogonal planes (LBP-TOP) was
formed.

Fig. 2 shows the spatiotemporal volume of a video. It also
illustrates the XY plane and the resulting XT and YT planes
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Fig. 2. Illustration of a spatiotemporal volume of a video, the XY plane
(original frames) and the resulting temporal planes for LBP feature extraction.

from a single row and column of the volume. The LBP-TOP
description is formed by calculating the LBP features from
the planes and concatenating the histograms. Intuitively it can
be understood that XT and YT planes encode the vertical and
horizontal motion patterns respectively.

The original LBP operator was based on a circular sampling
pattern; however, different radii and neighborhoods can also be
used. An elliptic sampling is used for the XT and YT planes:

Pplane—1

LBP(2c,yerte) = s(gp — g2

p=0

(15)

where g, is the gray value of the center pixel (z.,y.,t.)
and g, are the gray values at the Ppjune sampling points. s(u)
is 1 if w > 0 and O otherwise. Py, can be different on
each plane. The gray values g, are taken from the sampling
point: (z. — Ry sin(2wp/Pyt), Ye, te — Ri cos(2mp/Pyt)) on
the XT plane and similarly (z.,y. — Ry sin(2wp/Pyt),tc —
Ry cos(2mp/Py:)) on the YT plane. Rg is the radius of the
ellipse in the direction of axis d (x, y or t). As the XY
plane encodes only the appearance, i.e., both axes have the
same meaning, circular sampling is suitable. Values g, for
points that do not fall on pixels are estimated using bilinear
interpolation. The length of the feature histogram for LBP-
TOP is 2P+v 4-2P+¢ 1 2Pyt when all three planes are considered.

For 4D or higher dimensional objects, the LBP can be ex-
tended to higher-dimensional space from the tensor viewpoint.
From the conceptual formal, given a pixel c in a D dimensional
object, its D dimensional LBP is computed by comparing it
with its P neighbors p. The neighbors lie on a D-dimensional
hyper-sphere with center ¢ and a radius equal to R. However,
the conceptual formal is infeasible. In the higher-dimensional
space, a large enough number of neighbors P ensures that the
maximum local information of c is coded. This means that the
length of the LBP code is very long, beyond the capacity of a
PC. An additional problem is how to choose the P neighbors
on a D-dimensional hyper-sphere such that the P neighbors
are evenly distributed.

To address these problems, we introduce Tensor Orthogonal
LBP (TO-LBP). In D-dimensional space, the number of D—1-
dimensional hyper-planes is D. These D — 1-dimensional
hyper-planes are orthogonal to each other. In each D — 1-
dimensional hyper-plane, we can find a D — 1-dimensional
hyper-sphere, with center ¢ and a radius equal to R. Similarly,
in each D — 1-dimensional space, the number of D — 2-
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dimensional hyper-planes is D — 1. These D — 2-dimensional
hyper-planes are orthogonal to each other. In each D — 2-
dimensional hyper-plane, we can find a D — 2-dimensional
hyper-sphere, with center ¢ and a radius equal to R. This is a
recursive procedure, until the 2-dimensional plane, on which
there is a circle with center ¢ and a radius equal to R. Hence,
we have D x (D—1) x...x 3 circles, each of which represents
a special direction in D-dimensional space. When D = 3, TO-
TOP degenerates into LBP-TOP.

Although a color micro-expression video clip may be repre-
sented as a fourth-order tensor, its mode-4 has only 3 elements.
We can therefor use LBP-TOP to extract the dynamic textures
from each color component, and then concatenate them as a
long feature vector to represent the micro-expression sample.
Similar to LBP, LBP-TOP also need to divide the sample into
several patches, then code for each patch. In following section,
we will design a set of Regions of Interest (ROIs) for coding
LBP-TOP.

V. ACTION UNITS AND REGIONS OF INTEREST

The Facial Action Coding System (FACS) [36] is an ob-
jective method for quantifying facial movement based on a
combination of 38 elementary components. These elementary
components comprising 32 action units (AUs) and 6 action
descriptors (ADs), can be seen as the phonemes of facial ex-
pressions. As words are temporal combinations of phonemes,
micro-expression are spatial combinations of AUs. Each AU
depicts a local facial movement. We selected a frontal neutral
facial image as the template face and divided it into 16 Regions
of Interest (ROIs) based on these AUs. Each ROI corresponds
to one or more AUs. Fig. 3 shows the template face, the 16
ROIs and the corresponding AUs. Table I also lists the AU
number, FACS name and the corresponding ROI according to
[36].

In [36], the AUs are divided into 6 groups. Group 6 Mis-
cellaneous Actions and Supplementary Codes is not specific
to any muscular basis and has no corresponding ROI, the
muscular anatomy and muscular action of the other groups are
illustrated in Fig. 4 and Fig. 5, which are taken from [36]. The
ROIs are drawn according to the muscular action. In Group 5,
AUs were seldom found in micro-expressions, perhaps because
they last longer than 500 milliseconds. Thus the ROIs do not
take these AUs into account.

Many of the 16ROIs correspond to multiple AUs with
different directions of movement. For example, AU16 and
AU20 are contained in ROI R4 (or Ry3). The direction of
movement of AU16 is vertical (up/down) and that of AU20
is horizontal. So the texture descriptor (LBP or LBP-TOP)
on Ry, therefore has more discriminant power to discriminate
between AU16 and AU20.

VI. LBP-TOP oON TICS FOR MICRO-EXPRESSION
RECOGNITION

LBP-TOP is a dynamic texture operator and can represent
not only appearance information but also motion information.
It has already successfully been used for expression recog-
nition [18] and micro-expression recognition [17]. However,

AUT ; = AU2
AU4 - g |
AU7
AU9
AUB g}~ AUS
AU10 i AUT1 AU12
AU13AU14
AU16 AUTS
AU20

AU17

Fig. 3. Template face and 16 ROIs [1].

TABLE I
AU NUMBER, FACS NAME AND CORRESPONDING ROI

Group 1: Upper Face Action Units

AU Number FACS Name Region of Interest
AUI Inner Brow Raiser R1, R2
AU2 Outer Brow Raiser R3, R4
AU4 Brow Lowerer R1, R2
AU5 Upper Lid Raiser No ROI
AU7 Lid Tightener Rs, Rg
AU6 Cheek Raiser and Lid Compressor  R7, Rg, Ro, Ri1o
AU43 Eye Closure - Optional No ROI
AU45 Blink - Optional No ROI
AU46 Wink - Optional No ROI

Group 2: Lower Face Action Units - Up/Down Actions

AU Number  FACS Name Region of Interest

AU9 Nose Wrinkler Ris

AU10 Upper Lip Raiser Rg, R10

AU17 Chin Raiser Ris

AU15 Lip Corner Depressor Ri1, R12

AU25 Lips Part No ROI

AU26 Jaw Drop No ROI

AU27 Mouth Stretch No ROI

AU16 Lower Lip Depressor R13, R14

Group 3: Lower Face Action Units - Horizontal Actions

AU Number  FACS Name Region of Interest
AU20 Lip Stretcher Ri3, R1a
AU14 Dimpler Ri1, Ri2

Group 4: Lower Face Action Units - Oblique Actions

AU Number  FACS Name Region of Interest
AU11 Nasolabial Furrow Deepener Ri1, R12
AU12 Lip Corner Puller Ri11, R12
AU13 Sharp Lip Puller Ri11, R12

Group 5: Lower Face Action Units - Orbital Actions

AU Number  FACS Name Region of Interest
AUI18 Lip Pucker No ROI
AU22 Lip Funneler No ROI
AU23 Lip Tightener No ROI
AU24 Lip Presser No ROI
AU28 Lips Suck No ROI

Group 6: Miscellaneous Actions and Supplementary Codes

AU Number  FACS Name Region of Interest
AUS8+25 Lips Toward Each Other No ROI
AU21 Neck Tightener No ROI
AU31 Jaw Clencher No ROI
AU38 Nostril Dilator No ROI
AU39 Nostril Compressor No ROI
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Fig. 4. Muscular Anatomy [36]. The numbers in the figures are the AU numbers. (a) Upper Face Action Units; (b) Lower Face Action Units - Up/Down
Actions; (c) Lower Face Action Units - Horizontal Actions; (d) Lower Face Action Units - Oblique Actions; (e) Lower Face Action Units - Orbital Actions.

() (d)
Muscular Action [36]. The numbers in the figures are the AU numbers. (a) Upper Face Action Units; (b) Lower Face Action Units - Up/Down
Actions; (c) Lower Face Action Units - Horizontal Actions; (d) Lower Face Action Units - Oblique Actions; (e) Lower Face Action Units - Orbital Actions.

Fig. 5.

LBP-TOP histogram

TICS model I' I i
XY XT Y,
the final feature vector

Video Registion Video Normalization

Template Face

Fig. 6. Level diagram of our method.
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only gray video clips were used in these studies. Recent
research has shown that the use of color information may
significantly improve the discriminative power of LBP [20],
while other research has shown that expression recognition
achieves better performance in perceptual color spaces [30].
Motivated by these studies, we propose a novel idea to use
LBP-TOP on Tensor Independent Color Space (TICS) for
micro-expression recognition. Fig. 6 shows the level diagram
of our method.

First, we register the micro-expression video to address the
large variations in the spatial appearances of faces. A face
in the first frame of each video clip was normalized to a
template face by registering 68 facial landmark points detected
using the Active Shape Model (ASM) [37]. The registration
transformation is denoted as 7. Others frames are transformed
by the same T'.

Then, the registered video was normalized. The facial region
of each frame was cropped and normalized to 163 x 134
pixels. The frame numbers of each video clip were normalized
to I3 by using linear interpolation. Hence, each video was
normalized to a fourth-order tensor A/163x134x[3x3 g 4.
mode includes 3 color components (R, G and B) in RGB color
space.

TICS is performed to transform the 4-mode from RGB into
TICS. TICS has three color components T, Ty and Ts.
Each color component video was divided in 16 ROIs, and an
LBP-TOP histogram was calculated from each ROI. The 48
histograms (3 color components, 16 ROIs) were concatenated
to form the final vector.

Fig. 7 illustrates the color components in RGB color space
and TICS color space. LBP-TOP is used to extract dynamic
texture features from the T;, To and T3 components. Fig. 7
also shows the LBP codes on the XT plane in the color
components. The LBP codes of the R, G and B color
components are all 01110000, while the LBP codes of the
T;, Ty and T3 color components are 11111000, 00001111
and 1111000, respectively.

Why are the LBP codes of R, G and B color components
usually are the same? The explanation is given as follows.
Given a pixel ¢ in the RGB image, its value in the R color
components is denoted as g7, and the values of its neighbors
in the R color components are denoted as g, (p =0,1,...,7).
In the G color components, the values of the given pixel ¢ and
its neighbors are similarly denoted as g¢ and g7 (see Fig. 8).
In an extreme case, we assume that R and G have a linear
correlation. ., g

9o _ 9

ge 9¢
According to Eq. (13), the LBP codes of the given pixel c in
color components G and B are

=k, (16)

7 7
LBPT:Zs(g;—gC Zs ((k, — 1)gl)2P  (17)
p=0 p=0
and
7

7
Zs (kp — 1)g2)2".

p=0

LBP, = Zs(gg —g9)2 (18)

p=0

Because g. > 0 and g, > 0, we have

3((’% - 1)g;) = S(kp -1) (19)

and
s((kp —1)g?) = s(kp — 1).

Hence, LBP, = LBP,, which means that the LBP codes of
the given pixel ¢ in color components G and B are the same.
However, Eq. (16) does not always hold. We assume that

(20)

9o _gr 95
= =k and = =k9. @2n
g 7 gt "
Hence, we have
7
LBP, =Y s(k (22)
p=0
and
7
LBPy =Y s(kf — (23)
p=0

If the conditions k; > 1 and kg > 1 or k; < 1 and kg <1
are met at same time, we also obtain LBP, = LBP,.

What is the probability that these conditions are met? An
investigation was performed using the CASME and CASME 2
databases. In CASME, the probability that the conditions are
met in color components R and G is §9.01%, and in CASME
2, the probability is 88.98%.

We use similar method to investigate the probabilities that
the conditions are met in each color component pairs in TICS,
CIELab, CIELuv and RGB. Table II shows the probabilities
that the conditions are met in each color component pairs.
Based on the table, we can see that the probability that the LBP
codes of the three color components are the same is over 85%
in RGB color space. Hence, the combination of the LBP of
R, G and B color components can not significantly improve
the final performance. In TICS, there is at least one color
component pair for which the probability of the conditions
being met at the same time is very low, which means the
probability of the LBP codes in the two color components
being the same is very low. Hence, the combination of the LBP
of the color components in TICS may significantly improve
upon the final performance.

TABLE 11
PROBABILITY (%) THAT THE CONDITIONS ARE MET IN COLOR
COMPONENT PAIRS.

Database Component Pairs  TICS CIELuv CIELab RGB

(1,2) 56.61 59.14 52.95 89.01

CASME (1,3) 42.48 59.30 51.63 87.28

(2,3) 8.83 65.25 56.62 90.00

(1,2) 13.25 55.99 50.01 88.98

1,3 21.51 64.81 52.37 86.03

CASME 2 E2, 33 7120 62.68 5700  89.37

The mutual information of two random variables is a
measure of their mutual dependence. Formally, the mutual
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Fig. 8. Example of the color LBP operator.

information of two discrete random variables X and Y can
be defined as:

16Y) = 33 pla, ) o220

(24)

S5 p(x)p(y)
where p(x,y) is the joint probability distribution function of
X and Y, and p(z) and p(y) are the marginal probability
distribution functions of X and Y respectively. The larger
I(X;Y) is, the more sharing information between X and Y
there will be. This means that the combination of X and Y
provides less additional information.

A face image is randomly picked from CASME
2, and the mutual information is calculated from
each pair of color components. I(LBP,;LBP,) =
I(LBP,; LBP,) = I(LBP,; LBP,) = 0.42,
I(LBPr,; LBPy,) = I(LBPr,;LBPr,) = 0 and

I(LBPr,; LBPr,) = 0.38. Hence, the LBP features in
TICS are more independent than RGB space such that the
performance in TICS superior.

VII. EXPERIMENTS

A. CASME

The Chinese Academy of Sciences Micro-Expression
(CASME) database [38] includes 195 spontaneous facial
micro-expressions recorded by two 60 fps cameras. The sam-
ples were selected from more than 1500 facial expressions.
The selected micro-expressions had either a total duration
of less than 500 ms or an onset duration (time from onset
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frame to apex frame®) of less than 250 ms. These samples are
coded with the onset, apex and offset frames, and tagged with
action units (AUs) [39]. In this database, micro-expressions
are labeled into seven categories (happiness, surprise, disgust,
fear, sadness, repression and tense). Fig. 9 is an example.

The CASME database is divided into two classes: Set A
and Set B. The samples in Set A were recorded with a
BenQ M31 consumer camera with 60fps, with the resolution
set to 1280 x 720 pixels. The participants were recorded in
natural light. The samples in Set B were recorded with a
Point Grey GRAS-03K2C industrial camera with 60fps, with
the resolution set to 640 x 480 pixels. The participants were
recorded in a room with two LED lights. Industrial cameras
may capture the subtler movements of micro-expressions with
higher frame rate, but the color depth is no more than 16-bit,
which is far lower than that of consumer cameras. Therefore,
Set B is used in the following experiments.

In the experiments, we merged the seven categories into
four classes. Such a classification may be more easily ap-
plied in practice. Positive (4 samples) contains happy micro-
expression, which indicates ”good” emotions in the individual.
Negative (47 samples) contains disgust, sadness and fear,
which are usually considered “bad” emotions. Surprise (13
samples) usually occurs when there is a difference between
expectations and reality and can be neutral/moderate, pleasant,
unpleasant, positive, or negative. Tense and repression indicate
the ambiguous feelings of an individual and require further
inference, so they were categorized in the Other class (33
samples). We selected 97 samples* from Set B. Nonetheless,
there is a tremendous difference in the sample numbers in
each class. Therefore, in the experiments, we use the Leave-
One-Sample-Out (LOSO) cross-validation; i.e., in each fold,
one sample is used as the test set, and the others are used
as the training set. After 97 folds, each sample has been

3The onset is the first frame that changes from the baseline (usually a neutral
facial expression). The apex is the frame that reaches the highest intensity of
the facial expression. The offset is the last frame of the expression (before
turning back to a neutral facial expression). Occasionally, a facial expression
faded very slowly, and the changes between frames are very difficult to detect
by eyes. For such offset frames, the coders only coded the last clear frame
as the offset frame while ignoring the nearly imperceptible changing frames.

4There is a sample with 122 frames. It was removed.
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47 53

Fig. 9.
Corner Depressor.

used as the test set once and the final recognition accuracy
is calculated based on all of the results. Of the 97 samples,
the frame number of the shortest sample is 10 and that of
the longest sample is 68. The frame numbers of all samples
are normalized to 70 using linear interpolation. Hence, each
sample was normalized to a fourth-order tensor with a size of
163 x 134 x 70 x 3.

In the experiments, we compared the micro-expression
recognition rates in TICS, RGB, gray, and two perceptual color
spaces [30]: CIELuv and CIELab. For the gray color space, we
extracted LBP-TOP to represent the dynamic texture features
for each ROI and built histograms. Then, the histograms were
concatenated into a vector as an input for the classifier. A
support vector machine (SVM) classifier was selected and
used the linear kernel as the kernel function. For the TICS,
CIELuv, CIELab, and RGB color spaces, we used the same
method to build the LBP-TOP histograms and concatenate
them into a vector for each color component. The vectors were
concatenated to a long vector as an input for SVM. For LBP-
TOP, the radii in axes X and Y (be marked as R, and R,) were
set as 1 and the radii in axies T (marked as R;) was assigned
various values from 2 to 4. The number of neighboring points
(marked as P) in the XY, XT and YT planes were all set to
4 and 8. The uniform pattern and the basic LBP were used in
LBP coding. The results are shown in Table III.

From the table, we can see that the performances in the
TICS color space is the best in most cases. When R; = 2,
CIELab achieves the best performances in the first three cases,
but the performances of TICS is better than those of RGB and
gray. We can see that the performance of the uniform pattern
is the same as that of the basic LBP in most cases, although
its code length is far shorter. In addition, the accuracies with
P = 8 are not better than the accuracies with P = 4 in many
cases. Therefore, we used the uniform pattern and set P as 4
in the following experiments.

Fig. 10 shows five confusion matrices of TICS, CIELuv,
CIELab, RGB, and GRAY in Set B of CASME. No Positive
sample is misrecognized as Negative, and no Negative sample
is misrecognized as Positive. According to the field of psychol-
ogy, Positive and Negative expressions are opposites. Positive
facial expressions usually have distinct differences in their

59

>
(frames)

61 75

A demonstration of the frame sequence of a micro-expression in CASME. The AU number for this micro-expression is 15, which indicates Lip

appearance from Negative facial expressions. For happiness,
AUG6 and AU12 are linked to upward movements of the mouth
corner, while for Negative facial expressions such as disgust,
fear and sadness, the mouth corners move downward (such
as AU16) and/or there are movements of the eye-brows (such
as AU 4) or chin (such as AU 17). Surprise, however, can be
positive, negative, or neutral, depending on different situations,
which makes it more likely to be misrecognized as other
categories.

The recognition accuracy of each class of micro-expression
(except for Positive in TICS) is higher in the TICS, CIELuyv,
and CIELab color spaces than in the RGB color space. For
Others, TICS has the highest recognition accuracy 51.52%.
For Negative, TICS and CIELuv achieved better performances
than CIELab. For Positive, however, TICS achieved a worse
performance than CIELuv and CIELab. From the figure, we
can see that the recognition accuracy of Positive is lower in
RGB than in gray because the number of Positive samples was
too small (only 4 samples).

B. CASME2

The CASME2 [40] database includes 255 spontaneous
facial micro-expressions recorded by two 200 fps cameras.
These samples were selected from more than 2,500 facial
expressions. Compared with CASME, this spontaneous micro-
expression database is improved in its increased sample size,
fixed illumination, and higher resolution (both temporal and
spatial). This database selected micro-expressions either with
a total duration of less than 500 ms or an onset duration (time
from the onset frame to apex frame) of less than 250 ms.
These samples are coded with the onset and offset frames ans
tagged with action units (AUs) and emotions. Fig. 11 is an
example. In this database, micro-expressions are labeled into
seven categories (happiness, surprise, disgust, fear, sadness,
repression and tense).

We also merged the seven categories into four class-
es: Positive (32 samples), Negative (66 samples), Surprise
(25 samples), and Others (129 samples). The LOSO cross-
validation mentioned in the previous experiment is also used
in this experiment. To address the large variations in the
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TABLE III
MICRO-EXPRESSION RECOGNITION ACCURACIES (%) IN GRAY, RGB AND TICS COLOR SPACES IN SET B OF CASME.

TICS CIELuv CIELab RGB GRAY

P = 4, uniform pattern ~ 57.73 58.76 61.86 52.58 51.55

R, =2 P = 4, basic LBP 57.73 58.76 61.86 52.58 51.55

t= P =8, uniform pattern ~ 59.79 59.79 60.82 54.64 52.58

P = 8, basic LBP 59.79 59.79 58.76 53.61 51.55

P = 4, uniform pattern  61.86 61.86 58.76 55.67 53.61

R, =3 P = 4, basic LBP 61.86 61.86 58.76 55.67 53.61

t= P = 8, uniform pattern  61.86 55.67 59.79 54.64 54.64

P = 8, basic LBP 60.82 59.79 56.70 54.64  54.64

P = 4, uniform pattern ~ 60.82 60.82 58.76 54.64 54.64

R —4 P = 4, basic LBP 60.82 60.82 58.76 54.64  54.64

t= P = 8, uniform pattern ~ 57.73 54.64 59.79 57.73 54.64

P = 8, basic LBP 60.82 59.79 60.82 55.67 54.64

Predicted
TICS CIELuv ClIELab

Positive | Negative | Surprise | Others | Positive | Negative | Surprise | Others | Positive | Negative | Surprise | Others
Positive 25.00 0 0 75.00 50.00 0 0 50.00 50.00 0 0 50.00
Ground | Negative 0 80.85 0 19.15 0 80.85 0 19.15 0 78.72 2.13 19.15

Truth | Surprise | 15.38 23.08 30.77 30.77 7.69 23.08 30.77 38.46 15.38 23.08 30.77 30.77
Others 9.09 24.24 15.15 51.52 9.09 33.33 9.09 48.48 9.09 33.33 9.09 48.48

RGB GRAY
Positive | Negative | Surprise | Others | Positive | Negative | Surprise | Others
Positive | 25.00 0 0 75.00 | 50.00 0 0 50.00
Ground | Negative 0 78.72 2.13 19.15 0 74.47 4.26 21.28

Truth | Surprise 7.69 38.46 23.08 30.77 7.69 30.77 23.08 38.46
Others 12.12 45.45 9.09 33.33 12.12 42.42 12.12 33.33

Fig. 10. Five confusion matrices of TICS, CIELuv, CIELab, RGB, and GRAY in Set B of CASME.

21 41 53 72 100 (frames)

Fig. 11. A demonstration of the frame sequence of a micro-expression in CASME 2. The AU number for this micro-expression is 4, which indicates Brow
Lowerer. The three rectangles above the images show the right inner brow (AU4) in zoom in mode.
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spatial appearances of micro-expressions, we used the same
transformation method as in the previous experiments. In the
samples, the frame number of the shortest sample is 24, and
that of the longest sample is 146. The frame numbers of all
samples are normalized to 150 by linear interpolation. The size
of each frame is normalized to 163 x 134 pixels. Therefore,
each sample was normalized to a fourth-order tensor with a
size of 163 x 134 x 150 x 3.

To estimate the performance of micro-expression recogni-
tion in TICS, CIELuv, and CIELab color spaces, we compared
them with RGB and gray color spaces. The radii in axes X
and Y were assigned various values from 1 to 4. To avoid too
many combinations of parameters, we made R, = R,. The
radius in axis T was assigned various values from 2 to 4. The
number of neighboring points in the XY, XT and YT planes
was set as 4. A uniform pattern was used in LBP coding. The
other settings are the same as in previous experiments. The
results are listed in Table IV.

From the table, the performances in the TICS, CIELuv,
and CIELab color spaces are better than those of RGB and
GRAY in most cases. Both TICS and CIELuv reach the highest
recognition accuracy 62.30%. The amount of information in
the RGB color space is three times as much as that in gray.
However, the accuracy in the RGB color space is sometimes
(for example, in R, = 2, R, = 2, Ry = 2 cases) worse than
that in gray. This is due to the large amount of redundant
information in the RGB color space in general, which is an
obstruction of the further improvement in accuracy in the RGB
color space. As the redundancy is removed from the TICS
color space, the accuracy is better in general.

Fig. 12 shows the five confusion matrices of TICS, CIELuyv,
CIELab, RGB, and GRAY in CASME 2. Compared with RGB
and GRAY, the recognition accuracies of Positive, Negative
and Others in TICS, CIELuv, and CIELab color spaces
are improved. The recognition accuracy of Others in TICS
achieves a highest value of 72.09%, the recognition accuracy
of Positive in CIELab achieves a highest value of 53.13%,
and the recognition accuracy of Negative in CIELuv achieves
a highest value of 57.58%.

The classical descriptors based on LBP are only applied on
gray images. Color information, however, may significantly
improve the discriminative power of descriptors. There exist
two main methods to combine color and texture cues to
improve the discriminative power [41][42].

Early Fusion: Early fusion involves combining color and
texture cues at the pixel level. A common way is to compute
the texture descriptors on the color channels and then to
concatenate them.

Tg =[Tr, T, TB| (25)

where 1" can be any texture descriptor.

Late Fusion: Late fusion involves combining color and
texture cues at the image level. The color and texture cues
are processed independently. The two histograms are then

concatenated into a single representation.
Ty, = [Hr, Hc] (26)

where Hr and H¢ are explicit texture and color histograms.

The proposed method belongs to early fusion. Following,
we also use later fusion in CASME 2. In the experiments,
Hrp is the histogram of LBP-TOP on gray video. For RGB
color space, we use the RGB histogram designated as H¢. The
RGB histogram [43] is a combination of three 1D histograms
based on the R, G the and B color components of the RGB
color space. Each histogram is normalized to [0, 1]. For TICS
color space, the values of TICS are normalized to [0,255].
Three histograms are calculated from the Ty, Ty and Tj
color components and are then concatenated into H¢. Table V
lists the recognition accuracies of early fusion and late fusion,
in which the recognition accuracies of early fusion are from
Table IV. From the table, we can see that in most cases the
recognition accuracies of early fusion are higher than those of
late fusion.

TABLE V
MICRO-EXPRESSION RECOGNITION ACCURACIES (%) OF EARLY FUSION
AND LATE FUSION IN TICS AND RGB.

Early Fusion Later Fusion

TICS RGB | TICS RGB
Ry =1,Ry=1,R¢=2 | 5675 5833 | 5635 5556
Ry =1,Ry=1,R;=3 | 5873 5635 | 56.75 55.16
Ry =1,Ry=1,R¢ =4 | 6190 5873 | 56.75 55.56
Ry =2,Ry=2,R¢ =2 | 5992 5595 | 5595 55.16
Ry =2,Ry=2,R¢=3 | 61.11 5754 | 5635 5556
Ry =2,Ry=2,R¢ =4 | 6230 5952 | 5635 55.16
Ry =3,Ry=3,R¢=2 | 5397 5476 | 5595 55.16
Ry =3,Ry=3,Re=3 | 5516 56.35 | 5635 5556
Ry =3,Ry=3,R¢ =4 | 56775 59.52 | 56.75 5556
Ry =4,Ry, =4,Ry =2 | 5833 5635 | 5595 55.16
Ry =4,Ry=4,R; =3 | 5833 5357 | 5635 5595
Ry =4,Ry=4,Ry =4 | 57.54 55.16 | 56.75 5595

To investigate the mutual information among the three
components in these color spaces, we calculate the LBP-TOP
codes for each component of the micro-expression video clips.
Then, the mutual information based on these LBP-TOP codes
is calculated. Each sample then has three mutual information
values: components 1 and 2, components 2 and 3, components
3 and 1. We plot these values in Fig. 13. From the figure, the
mutual information values in TICS, CIELuv, and CIELab are
smaller than those in RGB color space. This explains why the
performances of TICS, CIELuv, and CIELab are better than
that of RGB.

We also use the template face as the target image, and
produce scatter plots of more than 5,000 randomly chosen
data points in the four color spaces. Fig. 14 depicts these
scatter plots, which show three pairs of axes plotted against
each other. The data points are decorrelated if the data are
axis-aligned. The RGB color space shows an almost complete
correlation between all pairs of axes because of the data cluster
around a line with a 45-degree slope. The TICS color space
shows that the correlation between T3 and T3 is small. Based
on this observation, it is deduced that the combination of Ty
and T3 maybe achieve better performance.

To verify this assumption, the same experiment was con-
ducted on all pairs of components in TICS. Table VI lists
the experimental results. In most cases, the combination of
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TABLE IV
MICRO-EXPRESSION RECOGNITION ACCURACIES (%) IN TICS RGB AND GRAY COLOR SPACES IN CASME 2.

Parameters TICS CIELuv CIELab RGB GRAY
Ry =1,Ry=1,R; = 56.75 57.54 59.52 58.33 54.37
R, =1,Ry=1,R;=3 5873 58.73 59.13 56.35 55.16
R:=1,Ry,=1,Rt =4 6190 59.13 59.92 58.73 55.95
Ry =2,Ry=2,Rt =2 5992 59.92 59.52 55.95 56.35
Ry =2,Ry=2,R=3 6111 59.92 59.92 57.54  55.16
Ry =2,Ry=2,Rt =4 6230 58.33 61.11 59.52  56.75
Ry =3,Ry=3,R¢=2 5397 59.92 57.94 54.76  51.59
Ry =3,Ry=3,Rt=3 55.16 60.32 59.13 56.35 55.14
Ry =3,Ry=3,Ri=4 5675 61.90 59.13 59.52  56.75
Ry =4,Ry=4,Ry =2 5833 58.33 55.56 56.35 51.59
Ry =4,Ry=4,Rt =3 5833 60.71 57.53 53.57 50.79
Ry =4,Ry=4,Ry =4 5754 62.30 58.33 55.16  55.16
Predicted
TICS CIELuv ClIELab
Positive | Negative | Surprise | Others | Positive | Negative | Surprise | Others | Positive | Negative | Surprise | Others
Positive 50.00 9.38 6.25 34.38 | 43.75 6.25 6.25 43.75 | 53.13 12.50 6.25 28.13
Ground | Negative 7.58 54.55 6.06 31.82 6.06 57.58 4.55 31.82 | 6.06 53.03 6.06 34.85
Truth | Surprise | 20.00 16.00 48.00 16.00 8.00 12.00 48.00 32.00 | 12.00 16.00 48.00 24.00
Others 7.75 17.83 2.33 72.09 11.63 20.93 3.10 64.34 | 8.53 18.60 3.10 69.77
RGB GRAY
Positive | Negative | Surprise | Others | Positive | Negative | Surprise | Others
Positive | 40.63 9.38 3.13 46.88 | 40.63 12.50 6.25 40.63
Ground | Negative 6.06 54.55 3.03 36.36 6.06 50.00 4.55 39.39
Truth | Surprise 8.00 24.00 60.00 8.00 8.00 16.00 60.00 16.00
Others 10.85 18.60 3.88 66.67 13.18 20.93 2.33 63.57
Fig. 12. Five confusion matrices of TICS, CIELuv, CIELab, RGB, and GRAY in CASME 2.

the mutual information between

O  ClELab ? 0 o0
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Fig. 13.  Mutual information between the three color components of TICS,
CIELuv, CIELab, and RGB.

(T3, T3) is the best. Comparing the combination of (T, T3)
with the combination of (T, T2, T3) (see Table IV), we
find that their results are almost the same. However, the
combination of (T2, T3) has a lower costs of storage and
higher efficiency.

2 for._vert

Hor__ven_
e e

* \

w0

-

(a) RGB

Hor._Vert
[

(c) CIELuv

(d) CIELab

Fig. 14.  Scatter plots made in TICS, CIELuv, CIELab, and RGB color
spaces. Note that the degree of correlation in these plots is defined by the
angle of rotation of the mean axis of the point clouds, with rotations of 0 or
90 degrees indicating uncorrelated data and in-between values indicate various
degrees of correlation.
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TABLE VI
MICRO-EXPRESSION RECOGNITION ACCURACIES (%) OF THREE
DIFFERENT COMBINATIONS OF COMPONENT PAIRS IN TICS.

Components Ty, Ty T2, Tz T1,Ts
Ry =1,R,—1,Ry =2 5397 5675 5040
Ry =1,Ry =1,Rt = 54.76 58.73 51.19
R:=1,Ry=1Rs = 52.38 61.51 53.17
Ry =2,R,—2,R, =2 5675 5992  5L19
Ry =2,Ry =2,R = 57.54 61.51 52.78
Ry =2,Ry =2,Rt = 55.95 62.30 50.79
Ry =3,Ry =3,Rt = 57.14 53.97 55.16
Ry =3,Ry =3, Ry = 5397 5516 57.54
Ry =3,Ry =3,R = 55.56 56.75 56.35
Ry =4, Ry =4, Rt = 55.95 58.33 56.75
Ry =4,Ry =4,Rs = ¢ 55.95 58.73 55.56
Ry =4, R, =4, Ry — 5437 5154 5675

VIII. CONCLUSION

We have presented a novel color space, Tensor Independent
Color Space (TICS) to recognize micro-expression. In TICS,

the

three color components are as independent from each

other as possible. The combination of LBP codes in TICS
is thus more effective than that in RGB, and we used the
mutual information to explain this. For the locality of LBP,
we designed a set of ROIs based on action units such a result.
The ROIs can remove some noises such as the nose tip. In
this paper, we also showed that the performance of micro-
expression recognition is better in the two perceptual color
spaces. The experiments on two micro-expression databases
revealed that the performances in TICS, CIELuv, and CIELab
are better than those in RGB or gray, because their components
are as independent from each other as possible.
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