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Abstract—As one of the fundamental features, color provides
useful information and plays an important role for face recog-
nition. Generally, the choice of a color space is different for
different visual tasks. How can a color space be sought for the
specific face recognition problem? To address this problem, we
propose a Sparse Tensor Discriminant Color Space (STDCS)
model which represents a color image as a third-order tensor in
this paper. The model can not only keep the underlying spatial
structure of color images but also enhance robustness and give
intuitionistic or semantic interpretation. STDCS transforms the
eigenvalue problem to a series of regression problems. Then
one spare color space transformation matrix and two sparse
discriminant projection matrices are obtained by applying lasso
or elastic net on the regression problems. The experiments on
three color face databases, AR, Georgia Tech and LFW face
databases, show that both the performance and the robustness
of the proposed method outperform those of the state-of-the-art
Tensor Discriminant Color Space (TDCS) model.

Index Terms—Face recognition, Color images, Discriminant
information, Tensor subspace, Sparse representation.

I. INTRODUCTION

After decades of research and development, face recognition
has attained considerable success in the field of personal
identification and public security, such as crime and terrorist
recognition. The various face recognition methods attract great
interests from researchers. Some of them focus on how to
extract the effective features from facial images. Principal
Component Analysis (PCA) [1] and Linear Discriminant Anal-
ysis (LDA) [2] are two popular methods for feature extraction.
To keep the spatial structure information of facial images,
Two-Dimensional Principal Component Analysis (2D-PCA)
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[3] and Two-Dimensional Linear Discriminant Analysis (2D-
LDA) [4] directly computed covariance (scatter) matrices from
the image matrix. Recently, the feature extraction methods
based on tensor is a hot topic. The methods can be divided
into 2 categories. In one category [5][6][7], a high order tensor
constructs a multilinear structure and models the multiple
factors of facial variation (e.g., different user identities, various
user postures and facial expressions, varying lights, etc.)
using High-Order Singular Value Decomposition (HOSVD)
[8][9][10]. In the other category[11][12][13][14], the conven-
tional transformation methods (such as PCA, Singular Value
Decomposition (SVD) and Locality Preserving Projections
(LPP)[15]) are generalized to tensors. They treat a gray image
as a 2nd-order tensor, a color image as a 3rd-order tensor.

Some of researchers focus on how to design novel classifiers
for face recognition. Kumar et al. [16] created the first image
search engine based entirely on faces. They divided the face
into various regions and extracted the features from these
regions. Then, Support Vector Machine (SVM) and Adaboost
were used to classify attributes by various combinations of
these regions. Wright et al. [17] developed a classifier based
on sparse solution to enhance the performance of occluded
face recognition. Schwartz et al. [18] developed a classifier
based on Partial Least Squares (PLS) and discriminative tree
to accelerate face identification for large data sets. To deal
well with the large-scale and high dimensional data sets, Fan
et al. [19]used the sample neighbors to effectively captures the
structures of the data and may enhance the face recognition re-
sult. Zafeiriou et al. [20] used regularized kernel discriminant
analysis to enhance face recognition and verification.

However, many methods only use gray-scale information
of face images. Thus plenty of color information, which is
useful for face recognition according to recent researches
[21], [22], [23], [24], is lost. In [21], the experimental results
showed that the recognition accuracy was improved if color
information was available for PCA based methods. In [22], a
RGB image whose size was I1 × I2 was transformed into a
I×3 matrix (I = I1×I2) and the 2D-PCA was applied on all
transformed matrices to recognize the color face images. The
experimental results showed that the accuracy can be improved
by about 3% compared to the same method which was applied
on the corresponding gray-scale images. It was demonstrated
by Choi et al. [23] that the recognition performance can be
significantly improved for low resolution face images (20
pixels or less) using facial color cue. Other researches [24]
also reveal that different color spaces (such as RGB, PCA
color space (PCS) and YIQ color space) provide better face
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recognition performance than gray scale only.
In computer vision field, most color spaces can be defined

by a transformation of the RGB color space, which is the
most widely used color space. The linear transformation color
spaces, such as the YUV and YIQ color space [25], are usually
associated with the properties of some hardwares. While the
nonlinear transformation color spaces, such as the HSV and
L*a*b* color space, are generally related to the human vision
system.

Usually, the R, G, and B component images in the RGB
color space are correlated. Decorrelation among the compo-
nents of component images helps reduce redundancy and is an
important strategy to improve the accuracy of the subsequent
recognition method [26]. Liu [27] proposed the uncorrelated
color space (UCS), the independent color space (ICS), and
the discriminating color space (DCS). Specifically, the UCS
applies PCA to decorrelate the R, G, and B component images.
The ICS and DCS further enhance the discriminating power
for the subsequent recognition method by means of Indepen-
dent Component Analysis (ICA) and LDA, respectively.

When an optimal color space is obtained, its effectiveness is
evaluated by using a recognition method. This separate strate-
gy cannot theoretically guarantee that the optimal color space
is best for the subsequent recognition method, and therefore,
cannot guarantee that the resulting face recognition system
is optimal in performance. Color Image Discriminant (CID)
model [28] is to seek a m optimal color space and an effective
recognition method of color images in a unified framework.
However, CID vectorizes each component image into a high
dimensional vector. This results in the loss of spatial structure
information of the component images. Moreover, CID also
suffers from the small sample size problem. To overcome these
drawbacks, Wang et al. [29] presented a Tensor Discriminant
Color Space (TDCS) model which used a 3rd-order tensor to
represent a color facial image.

Now, we review the above algorithms from the feature
selection (or rather, the feature transformation) view. UCS,
ICS and DCS are the results of feature transformations by
using PCA, ICA and LDA on the RGB color components. CID
used LDA not only on the RGB color components but also on
image information. To keep more spatial structure information
of the component images, TDCS use Discriminant Analysis
with Tensor Representation (DATER) to transform the RGB
color components and the image information.

Unfortunately, there is a lot of noise on real data. So,
the above feature transformations can not obtain the best
performance on real data. We can impose a sparse constraint
on their object functions. The sparseness is a tradeoff between
the optimal solution of their object functions and the noises.

Recently, the sparse feature transformation is one of the
hottest topics. Many papers show that the sparse feature
transformation methods can obtain better performance than
their corresponding non-sparse methods in the real data. And
these sparse methods can give an intuitionistic or semantic
interpretation for the transformed subspace. Sparse PCA (SP-
CA) was first proposed in [30] by applying the least angle
regression [31] and Elastic Net of ℓ1-penalized regression [32]
on regular principal components. In [33], Moghaddam et al.

suggested a spectral bounds framework for sparse subspace
learning and presented both exact and greedy algorithms for
sparse LDA (SLDA). They also described the same framework
for sparse PCA but they can only be applied to two-class
problem [34]. In order to address this problem, Qiao et al. [35]
extended the SPCA to obtain sparse discriminant vectors.

In this paper, we draw upon the insights from these ap-
proaches and explore a Sparse Tensor Discriminant Color
Space (STDCS) model which is an extension of TDCS [29].
The aim of STDCS is to make two discriminant projection
matrices U1, U2 and one color space transformation matrix
U3 sparse. Compared to the TDCS model, STDCS has two
main advantages: 1) the intuitionistic or semantic interpretation
and 2) the robustness not only for similarity measurement of
images but also for noised images.

The rest of this paper is organized as follows: in Section II,
we give the related definitions to tensor; in Section III, we
will briefly review the TDCS model; which is followed by an
introduction of the STDCS model in Section IV; in Section V,
the experiments are conducted on three color face databases:
AR, Georgia Tech and LFW face databases, and the results
are covered in the same section which show that the efficiency
and performance of STDCS are better than those of TDCS and
CID; finally in Section VI, conclusions are drawn and several
issues for the future works are described.

II. TENSOR FUNDAMENTALS

A tensor is a multidimensional array. It is the higher-
order generalization of scaler(zero-order tensor), vector(1st-
order tensor), and matrix (2nd-order tensor). In this paper,
lowercase italic letters (a, b, ...) denote scalars, bold lowercase
letters (a, b, ...) denote vectors, bold uppercase letters (A, B,
...) denote matrices, and calligraphic uppercase letters (A, B,
...) denote tensors. The formal definition is given below[10]:

Definition 1. The order of a tensor A ∈ RI1×I2×...×IN is N .
An element of A is denoted by Ai1i2...iN or ai1i2...iN , where
1 ≤ in ≤ In, n = 1, 2, . . . , N .

Definition 2. The n-mode vectors of A are the In-dimensional
vectors obtained from A by fixing every index but index in.

Definition 3. The n-mode unfolding matrix of A, denoted
by (A)(n) ∈ RIn×(I1...In−1In+1...×IN ), contains the element
ai1...iN at inth row and at jth column, where

j = 1 +
N∑

k=1,k ̸=n

(ik − 1)Jk, with Jk =
k−1∏

m=1,m ̸=n

Im.

(1)

We can generalize the product of two matrices to the product
of a tensor and a matrix.

Definition 4. The n-mode product of a tensor A ∈
RI1×I2×...×IN by a matrix U ∈ RJn×In , denoted by A×nU,
is an (I1 × I2 × . . .× In−1 × Jn × In+1 × . . .× IN )-tensor of
which the entries are given by:

(A×nU)i1i2...in−1jnin+1...iN
def
=

∑
in

ai1i2...in−1inin+1...iNujnin .

(2)
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Definition 5. The scalar product of two tensors A,B ∈
RI1×I2×...×IN , denoted by ⟨A,B⟩, is defined in a straight-
forward way as ⟨A,B⟩ def

=
∑

i1

∑
i2
. . .

∑
iN

ai1i2...ıN bi1i2...ıN .
The Frobenius norm of a tensor A ∈ RI1×I2×...×IN is then
defined as ∥A∥F

def
=

√
⟨A,A⟩

Form the definition of the n-mode unfolding matrix, we have

∥A∥F = ∥(A)(n)∥F (3)

By using tensor decomposition, any tensor A can be expressed
as the product

A = C ×1 U1 ×2 U2 . . .×N UN (4)

where Un, n = 1, 2, . . . , N , is an orthonormal matrix and
contains the ordered principal components for the nth mode.
C is called the core tensor. Unfolding the above equation, we
have

A(n) = UnC(n)(UN⊗. . .⊗Un+1⊗Un−1⊗. . .⊗U1)
T (5)

where operator ⊗ is the Kronecker product of the matrices.

III. OVERVIEW OF TENSOR DISCRIMINANT COLOR SPACE
MODEL

In this section, we overview the Tensor Discriminant Color
Space (TDCS) model. In TDCS, a color image is naturally
represented by a 3rd-order tensor. The 1-mode of a tensor is
the height of an image, the 2-mode of a tensor is the width
of an image and the 3-mode of tensor is the color space of
an image. For instance, a RGB image with size I1 × I2 is
represented as a tensor A ∈ RI1×I2×I3 , where I3 = 3. The
3-mode of A is the color variable in the RGB color space
which has 3 components corresponding to R, G and B in
RGB space.

Assuming C is the number of individuals, Ac
i is the ith

color face image of cth individual, and Mc is the number
of color face images of cth individual, where M = M1 +
M2 + . . .+MC . the TDCS algorithm seeks two discriminant
projection matrices U1 ∈ RI1×L1 , U2 ∈ RI2×L2 and a color
space transformation matrix U3 ∈ RI3×L3 (usually L1 < I1,
L2 < I2 and L3 ≤ I3) for transformation

Dc
i = Ac

i ×1 U
T
1 ×2 U

T
2 ×3 U

T
3 ,

i = 1, 2, . . . ,Mc, c = 1, 2, . . . , C.
(6)

which ensures that the projected tensors from the same indi-
vidual are distributed as close as possible, while the projected
tensors from different individuals are distributed as far as
possible.

The mean image of the cth individual is defined by:

Ac
=

1

Mc

Mc∑
i=1

Ac
i (7)

and the mean image of all individuals is defined by:

A =
1

C

C∑
c=1

Ac
(8)

The between-class scatter of color images is defined as:

Ψb(A) =
C∑

c=1

∥Ac −A∥2F (9)

and within-class scatter of color images is defined as:

Ψw(A) =
C∑

c=1

Mc∑
i=1

∥Ac
i −Ac∥2F (10)

A reasonable idea is to maximize the between-class scatter
of projected tensors Ψb(D) and to minimize the within-class
scatter of projected tensors Ψw(D). Then TDCS criterion can
be defined as follows:

max J(U1,U2,U3) =
Ψb(D)

Ψw(D)
(11)

Here, three matrices Un need to be simultaneously updated
for achieving the optimal solution of the criterion function J .
We can define n-mode between-class scatter matrix S

(n)
b and

n-mode within-class scatter matrix S
(n)
w as:

S
(n)
b =

C∑
c=1

(
A

c

(n) −A(n)

)
ŨnŨ

T
n

(
A

c

(n) −A(n)

)T

(12)

and

S(n)
w =

C∑
c=1

Mc∑
i=1

(
Ac

i(n) −A
c

(n)

)
ŨnŨ

T
n

(
Ac

i(n) −A
c

(n)

)T

(13)
where Ũn = UN ⊗ . . . ⊗ Un+1 ⊗ Un−1 ⊗ . . . ⊗ U1, n =
1, 2, . . . , N and N = 3.

Then, the between-class scatter of the projected tensors
Ψb(D) and the within-class scatter of the projected tensors
Ψw(D) can be rewritten as follows:

Ψb(D) = tr
(
UT

nS
(n)
b Un

)
(14)

and
Ψw(D) = tr

(
UT

nS
(n)
w Un

)
(15)

So, given all other projection matrices
U1, . . . ,Un−1,Un+1, . . . ,UN , the TDCS criterion can
be written as follow:

max
tr

(
UT

nS
(n)
b Un

)
tr

(
UT

nS
(n)
w Un

) (16)

According to Rayleigh quotient, Eq. (16) is maximized if and
only if the matrix Un consists of Ln generalized eigenvec-
tors, which are corresponding to the largest Ln generalized
eigenvalues of the matrix pencil (S(n)

b ,S
(n)
w ), which satisfies:

S
(n)
b v = λS(n)

w v (17)

Since S
(n)
b and S

(n)
w are dependent on

U1, . . . ,Un−1,Un+1, . . . ,UN , we can see that the
optimization of Un depends on the projections of other
modes. An iterative procedure can be constructed to
maximize Eq. (11). For details, please refer to our previous
work [29].
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IV. SPARSE TENSOR DISCRIMINANT COLOR SPACE MODEL

In this section, we discuss how to model the Sparse Ten-
sor Discriminant Color Space (STDCS). The same symbols
described and defined in Section III are re-used. The aim of
STDCS is not only to maximize Eq. (11) but also to make
three matrices Un sparse. Here, sparsity means that Un has
only a small number of nonzero elements or it has lots of
zero elements. Therefore, the criterion function of STDCS is
defined as:

max J(U1,U2,U3) =
Ψb(D)

Ψw(D)

subject to Card(Un) < Kn, n = 1, 2, 3

(18)

where Card(·) denotes the number of nonzero elements of
Un. The only difference between Eq. (18) and Eq. (11) is
a sparseness constraint imposed in Eq. (18). We convert the
generalized eigenvalue problem (16) to a regression problem
and then apply penalized least squares with an ℓ1 penalty.
We combine all color face images Ac

i ∈ RI1×I2×3 into
a fourth-order tensor A ∈ RI1×I2×3×M . To facilitate the
subsequent discussion, two tensors Hw ∈ RI1×I2×3×M and
Hb ∈ RI1×I2×3×M are introduced as follows:

Hw =



(A1
1 −A1

)
...

(A1
M1

−A1
)

(A2
1 −A2

)
...

(A2
M2

−A2
)

...
(AC

1 −AC
)

...
(AC

MC
−AC

)



and Hb =



(A1 −A)
...

(A1 −A)

(A2 −A)
...

(A2 −A)
...

(AC −A)
...

(AC −A)


(19)

where {·} denotes the combination of M N th order tensors
into a (N + 1)th order tensor. Further, Hb can be reduced to
a lower dimension tensor H′

b ∈ RI1×I2×3×C according to:

H′
b =


(A1 −A)

(A2 −A)
...

(AC −A)

 (20)

Theorem 1. Given N − 1 projection matrices
U1, . . . ,Un−1,Un+1, . . . ,UN , let

Gw = Hw×1U1 . . .×n−1Un−1×n+1Un+1 . . .×NUN , (21)

Gb = Hb×1U1 . . .×n−1Un−1×n+1Un+1 . . .×N UN (22)

and

G′
b = H′

b×1U1 . . .×n−1Un−1×n+1Un+1 . . .×N UN (23)

Then, S(n)
w = Gw(n)G

T
w(n), S

(n)
b = Gb(n)G

T
b(n) and S

(n)
b =

G′
b(n)G

′T
b(n)

Proof: Apply n-mode unfolding on Eq. (22):

G′
b(n) = (Hb ×1 U1 . . .×n−1 Un−1 ×n+1 Un+1 . . .×N UN )(n)

(24)

For c-th class,

((Ac −A)×1 U1 . . .×n−1 Un−1 ×n+1 Un+1 . . .×N UN )(n)

= (Ac −A)(n) · Ũn

(25)

Obviously, G′
b(n) can be rewritten as:

G′
b(n) = [(A1−A)(n)·Ũn, (A

2−A)(n)·Ũn, . . . , (A
C−A)(n)·Ũn]

(26)
So

G′
b(n)G

′T
b(n) =

[(A1 −A)(n) · Ũn, (A
2 −A)(n) · Ũn, . . . , (A

C −A)(n) · Ũn]

·


ŨT

n · (A1 −A)T(n)

ŨT
n · (A2 −A)T(n)

...
ŨT

n · (AC −A)T(n)


=

C∑
c=1

(Ac −A)(n) · Ũn · ŨT
n · (Ac −A)T(n)

=
C∑

c=1

(Ac

(n) −A(n)) · Ũn · ŨT
n · (Ac

(n) −A(n))
T

= S
(n)
b

(27)

Similarly, we can prove S
(n)
w = Gw(n)G

T
w(n) and S

(n)
b =

Gb(n)G
T
b(n).

Theorem 2. S
(n)
w is positive definite and its Cholesky decom-

position is denoted as S
(n)
w = RT

w(n)Rw(n), where Rw(n) ∈
RIn×In is an upper triangular matrix. v1, . . . ,vLn are eigen-
vectors of Eq. (17) which correspond to the Ln largest
eigenvalues. A = [α1, . . . , αLn ] and B = [β1, . . . , βLn ]
(A ∈ RIn×Ln). For λ > 0, then Â and B̂ are the solutions
of the following problem:

min
A,B

Ĩn∑
i=1

∥R−T
w(n)gi −ABTgi∥2 − λ

Ln∑
j=1

βT
j S

(n)
w βj

subject to ATA = I

(28)

where Ĩn = I1× . . . ,×In−1×I(n+1)× . . .×IN ×M and gi

is the ith row of Gb(n). Then β̂j spans the same linear space
as vj , where j = 1, . . . ,Łn

Proof: The proof is similar to Theorem 1 in [35].
According to Theorem 2, the generalized eigenvalue of Eq.

(17) is transformed to the regression problem of Eq. (28). The
regression problem (28) has two variables A,B that need to
be optimized simultaneously. It can be solved by iteratively
minimizing over A and B.
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Given a fixed B, the second term in Eq (28) is constant. Its
first term can be rewritten as:
Ĩn∑
i=1

∥R−T
w(n)gi −ABTgi∥2

= ∥Gb(n)R
−1
w(n) −Gb(n)BAT ∥2

= tr[(Gb(n)R
−1
w(n) −Gb(n)BAT )(Gb(n)R

−1
w(n) −Gb(n)BAT )T ]

= tr(Gb(n)R
−1
w(n)R

−T
w(n)G

T
b(n) +Gb(n)BBTGT

b(n))

− 2tr(BTGT
b(n)Gb(n)R

−1
w(n)A)

(29)

The second term in this equation is constant. Therefore,
we only need to maximize the tr(BTGT

b(n)Gb(n)R
−1
w(n)A)

subject to the constraint ATA = I. The solution is obtained
by computing the singular value decomposition:

R−T
w(n)(G

T
b(n)Gb(n))B = UDVT (30)

Given a fixed B, the solution of Eq. (28) is Â = UVT

according to Theorem 4 in [30].
Given a fixed A, let A⊥ be an orthogonal matrix such

that [A;A⊥] is In × In orthogonal, where [A;A⊥] means to
concatenate matrices A and A⊥ along rows. This is feasible
since A has orthonormal columns. Thus the first term in Eq.
(28) can be rewritten as following:

Ĩn∑
i=1

∥R−T
w(n)gi −ABTgi∥2

= ∥Gb(n)R
−1
w(n) −Gb(n)BAT ∥2

= ∥Gb(n)R
−1
w(n)[A;A⊥]−Gb(n)BAT [A;A⊥]∥2

= ∥Gb(n)R
−1
w(n)A−Gb(n)B∥2 + ∥Gb(n)R

−1
w(n)A⊥∥2

=

Ln∑
j=1

∥Gb(n)R
−1
w(n)αj −Gb(n)βj∥2 + ∥Gb(n)R

−1
w(n)A⊥∥2

(31)

Given a fixed A, therefore, the solution of Eq (28) is
B = [β1, . . . , βLn ], where βj can be obtained by solving the
following ridge regression problem:

min
βj

∥Gb(n)R
−1
w(n)αj −Gb(n)βj∥2 + λβT

j S
(n)
w β (32)

Here, Ln ridge regression problems are independent to each
other. In summary, we transform the generalized eigenvalue
problem (17) to Ln ridge regression problems (32). Howev-
er,the ridge regression does not provide a sparse solution. In
order to get the sparse solutions, one can use lasso regression
[36] on βj by using ℓ1 norm. Fig. 1 shows that the sparse
solution can be found by solving a ℓ1 norm problem but not
by solving a traditional ℓ2 norm problem.

We denote ỹj = (Gb(n)R
−1
w(n)αj , 01×In)

T and W̃ =

(GT
b(n),

√
λRT

w(n))
T , the ridge regression problems (32) are

equal to the following lasso regression problems:

min
βj

∥ỹj − W̃βj∥2 + λ1∥βj∥1 (33)

where λ1 is the ℓ1 norm tuning parameter. When λ1 is large
enough, some elements in βj will be shrunk to zero. However,

x
 x


y
y


Fig. 1. the sparse solution can be found by solving a ℓ1 norm problem but
not by solving a traditional ℓ2 norm problem. The x component of solution
of ℓ1 norm is zero.

the lasso has several shortages as pointed out in [32]. For
instance, the number of extracted features by the lasso is
limited by the number of samples. To address the shortage,
the elastic net [32] generalizes the lasso by combining both
the ℓ1 norm and ℓ2 norm as the penalty. The lasso regression
problems (33) can be written as the following elastic net
problems:

min
βj

∥ỹj − W̃βj∥2 + λ1,j∥βj∥1 + λ2∥βj∥2 (34)

where λ2 is the ℓ2 norm tuning parameter. When λ2 = 0,
elastic net is degraded to lasso regression.

Now, given all other sparse projection matrices
U1, . . . ,Un−1,Un+1, . . . ,UN , the sparse solution Un can be
obtained by solving the Ln elastic net problems (34). Since the
Gb(n) and Rw(n) depend on U1, . . . ,Un−1,Un+1, . . . ,UN ,
it can be seen that the optimization of Un depends on the
projections in other modes. An iterative procedure can be
constructed to maximize Eq. (18). The pseudocode of the
proposed method is summarized in Algorithm 1.

V. EXPERIMENTS AND RESULTS

A. Database

We conducted the experiments on three well-known color
face databases: AR[37], Georgia Tech face databases1 and
Labeled Faces in the Wild (LFW) face databases2.

The AR database contains over 4,000 color face images of
126 people (70 male and 56 female). A subset of 100 people
(50 male and 50 female) were selected in our experiment.
The selected images were frontal view faces with different
facial expressions, illumination conditions, and occlusions
(sun glasses and scarf). All images were taken under strictly
controlled conditions. No restrictions on wear (clothes, glasses,
etc.), make-up, hair style, etc. were imposed to participants.
The same pictures were taken for each individual in two
separate sessions which were apart for two weeks. 26 images
of each individual were selected in our experiment. All images
were cropped into 32 × 32 pixels. The sample images of
one individual from the AR database are shown in Fig. 2,
where Fig. 2(a)-Fig. 2(m) are from the first session used as
the training set, and Fig. 2(n)-Fig. 2(z) are from the second
session used for testing purpose.

Georgia Tech face database contains images of 50 individu-
als which were taken in two or three sessions at different times.
For each individual in this database, 15 color JPEG images

1http://www.anefian.com/research/face reco.htm
2http://vis-www.cs.umass.edu/lfw/



6 IEEE TRANSACTIONS ON NEURAL NETWORKS

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m)

(n) (o) (p) (q) (r) (s) (t) (u) (v) (w) (x) (y) (z)

Fig. 2. Sample images of one individual from the AR database.

Algorithm 1 STDCS
INPUT: a set of M labeled tensor samples Ac

i , i =
1, 2, . . . ,Mc, c = 1, 2, . . . , C, the number of reduced
dimensions Ln, n = 1, 2, 3 and sparse tuning parameters
λ, λ1, λ2.
OUTPUT: a set of projected tensors Dc

i , two sparse dis-
criminant projection matrices U1 ∈ RI1×L1 , U2 ∈ RI2×L2

and a sparse color space transformation matrix U3 ∈
RI3×L3

Algorithm:
Initialize Un with a set of identity matrices;
Calculate the mean image of the cth individual Ac

and the
mean image of all individuals A by Eq. (7) and Eq. (8);
Calculate Hw and Hb by using Eq. (19);
repeat

for n = 1 to 3 do
Calculate Gw and Gb by Eq. (21) and Eq. (22);
Calculate the mode-n unfolding Gb(n) and Gw(n);
Calculate the upper triangular matrix Rw(n) ∈ RIn×In

from the Cholesky decomposition of GT
w(n)Gw(n)

such that GT
w(n)Gw(n) = RT

w(n)Rw(n);
Initialize A as an identity matrix;
Calculate W̃ = (GT

b(n),
√
λRT

w(n))
T ;

repeat
for j = 1 to Ln do

Calculate ỹj = (Gb(n)R
−1
w(n)αj , 01×In)

T ;

Solve min
βj

∥ỹj − W̃βj∥2 + λ1,j∥βj∥1 + λ2∥βj∥2

by using the elastic net;
end for
Calculate B = [β1, . . . , βLn ];
Calculate R−T

w(n)(G
T
b(n)Gb(n))B = UDVT by us-

ing SVD;
Calculate A = UVT ;

until norm(Bk′+1 −Bk′) < ϵ1
end for
Calculate Un = B;
Calculate Jk+1 by Eq. (11);

until |Jk+1 − Jk| < ϵ
Compute a set of projected tensors Dc

i by Eq. (6);

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 3. Sample images of one individual from the Georgia Tech database
(unaligned head images).

were captured with clutter backgrounds. The resolution of
these images was 640×480 pixels and the size of face within
these images was around 150× 150. Faces illustrated in these
images may be frontal and/or tilted with different expressions,
illuminations and scales. Each image was manually cropped
and resized to 32 × 32 pixels. The sample images of one
individual from the Georgia Tech database are showed in
Fig. 3.

LFW database is designed for studying the problem of
unconstrained face recognition. It contains more than 13,000
images of faces collected from the web. Each face has been
labeled with the name of the person pictured. 1680 of the
people pictured have two or more distinct photos in the data
set. The only constraint on these faces is that they were
detected by the Viola-Jones face detector. In our experiments,
we choose 1,251 images from 86 people pictured have 11-
20 images. Each image was manually cropped and resized to
32× 32 pixels. The sample images of one individual from the
LFW database are showed in Fig. 4.

B. Experiment setting

For the purpose of evaluating the performance of STDCS,
we used face verification rate as the criteria. The FERET
Verification Testing Protocol [38] recommends using the Re-
ceiver Operating Characteristic (ROC) curves to depict the
relations between the Face Verification Rate (FVR) and the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 4. Sample images of one individual from the LFW database.

False Accept Rate (FAR). In order to get better performance,
in our experiments, the score matrices were generated by the
Manhattan distance and Euclidean distance, respectively. The
ROC curves were plotted by using the Statistical Learning
Toolbox3 according to the obtained score matrix. For tensor
operations, we used the tensor toolbox developed by Bader and
Kolda in MATLABTM[39]. All experiments on the Microsoft
Windows XP 64-bits version machine with 2.66 GHz Intel
CPU and 16 GB memory.

In our experiments, we will discuss the robustness of
algorithms from the following two aspects:

• The performance of algorithms is insensitive to the mea-
sures (Manhattan distance and Euclidean distance).

• The performance of algorithms is insensitive to the
aligned faces, occluded faces and noised faces.

C. Experiments and results on the AR database

In this experiment, we trained STDCS, TDCS and CID by
using 7 un-occluded color face images of each individual from
the first session in AR database and tested them using the
corresponding images in the second session. The convergence
threshold ϵ was set as 0.1 and x1 was initialized as [ 13 ,

1
3 ,

1
3 ]

T .
In STDCS, we set λ = 1000 and λ2 = 10−6. For the
parameter λ1, we used another strategy to tune the sparseness.
The number of non-zero elements in each column of three
sparse projection matrices were 10, 10 and 2. Meanwhile, we
carried out LDA and 2D-LDA on corresponding gray images.
Because there were 100 individuals in the AR database, only
99 discriminant projection basis vectors were extracted in LDA
and CID. For 2D-LDA, TDCS and STDCS, the two numbers
of the reduced spatial dimensions both are 10. The score
matrices were generated by Manhattan distance and Euclidean
distance, respectively. The ROC curves of the five methods are
shown in Fig. 5. The results indicate that the performance of
TDCS with Euclidean distance is slightly better than that of

3The slverifyroc function in the Statistical Learning Toolbox can only plot
the ROC curve illustrating the relations of the false reject rate versus the FAR.
We modified it to depict the relations between the FVR and the FAR.
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STDCS on RGB using Manhattan
TDCS on RGB using Manhattan
CID on RGB using Manhattan
2D−LDA on Gray using Manhattan
LDA on Gray using Manhattan
STDCS on RGB using Euclidean
TDCS on RGB using Euclidean
CID on RGB using Euclidean
2D−LDA on Gray using Euclidean
LDA on Gray using Euclidean

Fig. 5. ROC curves of STDCS, TDCS, CID, 2D-LDA and LDA on the
un-occluded facial images of AR database.

STDCS with Manhattan distance. However, the space between
two curves of STDCS is narrower than the space between two
curves of TDCS. This shows that STDCS is more robust to the
measures than TDCS. The curves in Fig. 5 also show that the
20 discriminant projection basis vectors in STDCS and TDCS
contain more discriminant information than 99 ones in CID.
It is derived from the fact that some discriminant information
is thrown away in the PCA step of CID model.

In order to investigate the robustness to noise, we used
all images including the occluded facial images in the first
session to train the models. All images in the second session
were used for testing. In this case, we got three color space
transformation matrices:

X =

 0.4126 −0.2107 −0.5558
−0.0261 −0.4683 1.0536
1.0000 0.9739 −0.5524

 , (35)

U3 =

 0.1267 −0.2084 0.3358
−0.2128 −0.4168 −0.7897
0.9689 0.8848 0.5134

 (36)

and

Usparse
3 =

0.8270 0 0.2287
0.5622 −0.9975 0.9735

0 −0.0705 0

 (37)

There are two non-zero elements in each column of Usparse
3 .

Using these three matrices, we got three color components
D1, D2, D3 of CID; three color components T1, T2, T3

of TDCS and three color components S1, S2, S3 of STDCS.
These components are illustrated in Fig. 8. Compared to CID
color space and TDCS color space, STDCS color space is
more intuitionistic, i.e. the color component images of STDCS
look more like real faces. Although S1 and S3 are similar to
RGB space, the influence of light on R component in RGB
is decreased in STDCS by the linear combination of R and G
components. The ROC curves are illustrated in Fig. 9, where
STDCS with Manhattan distance obtains the best performance.
Comparing with Fig. 5, STDCS obtains the best performance
for the occluded facial images. This also verify the STDCS
robustness to the occluded facial images.

In order to further investigate the robustness to noise,
some images were randomly selected and occluded with a
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Fig. 6. noise face images on the AR database.

(a) R (b) G (c) B (d) S1 (e) S2 (f) S3

(g) T1 (h) T2 (i) T3 (j) D1 (k) D2 (l) D3

Fig. 8. Illustration of R, G, and B color components and the various
components generated by CID, TDCS and STDCS on the AR face database.

rectangular noise consisting of random black and white dots
whose size was at least 128 pixels, located at a random
position. The manner of forming rectangle noise is similar to
that in [40]. Fig. 6 shows typical examples of noised images.
Fig. 7(a) shows the ROC curves of STDCS and TDCS by
adding noise to 20%, 40%, 60% and 80% samples of both
the training set and the testing set. Fig. 7(b) and Fig. 7(c)
show the ROC curves of the two algorithms by adding noise
on the training set and the testing set, respectively. From the
figures, the performances of STDCS with 80% noised samples
are better than those of TDCS with 20% noised samples in the
three cases. It is interesting that the shapes of ROC curves are
changed in the case of adding noise on the testing set.

For the intuition, we enhanced the sparse constraint and got
a sparse color sparse color transformation matrix as following:

Usparse′

3 =

1 0 0
0 1 0
0 0 −1

 (38)

Intuitively, the effect of B component differs from the other
two. In order to verify this difference, 2D-LDA is implemented
on R, G and B component images, respectively. In Fig. 10,
three ROC curves are illustrated from which we can see that
the curves of R and G components are similar, while the curve
of B component is quite different.

D. Experiments and results on the Georgia Tech face database

Georgia Tech face database is more complex than AR
database, because it contains various pose faces with different
expressions on cluttered background. In this experiment, we
used the first 8 images of each individual as the training set
and the remaining images as the testing set. The CID, TDCS
and STDCS models were trained and we got three color space
transformation matrices:

X =

−1.0000 0.4894 0.4076
0.8473 0.3595 −1.0134
−0.2767 −1.0401 0.5332

 , (39)
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STDCS on RGB using Manhattan
TDCS on RGB using Manhattan
CID on RGB using Manhattan
2D−LDA on Gray using Manhattan
LDA on Gray using Manhattan
STDCS on RGB using Euclidean
TDCS on RGB using Euclidean
CID on RGB using Euclidean
2D−LDA on Gray using Euclidean
LDA on Gray using Euclidean

Fig. 9. ROC curves of STDCS, TDCS, CID, 2D-LDA and LDA on AR face
database.
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2D−LDA on the R components
2D−LDA on the G components
2D−LDA on the B components

Fig. 10. ROC curves of 2D-LDA on R, G and B components of AR face
database.

U3 =

 0.1067 −0.3004 0.6192
0.7589 0.7798 −0.7852
−0.6424 −0.5492 0.0080

 (40)

and

Usparse
3 =

 0.9051 0 −0.7533
−0.4252 −0.7941 0

0 0.6077 0.6576

 (41)

These three matrices are not the same as Eq. (35), Eq. (36)
and Eq. (37) due to the different training sets. Using these
three matrices, we got three color components D1, D2, D3 of
CID; three color components T1, T2, T3 of TDCS and three
color components S1, S2, S3 of STDCS. These components
are illustrated in Fig. 11. In order to investigate the semantic
interpretation of each color component, we set the number of
non-zero elements in each column of the sparse color space
transformation matrix as one. The matrix is obtained as:

Usparse′

3 =

1 0 0
0 0 0
0 1 −1

 (42)

Fig. 12 illustrates three color components S1, S2, S3 in
STDCS. The three components S1, S2, S3 come from R,
B and negative B components in RGB color space. From
above analysis, the combination of R, B components from
RGB space is most effective for facial recognition on Georgia
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(a) noise on both training set and testing set
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(b) noise on training set
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(c) noise on testing set

Fig. 7. ROC curves of STDCS and TDCS the noised facial images of AR database.

(a) R (b) G (c) B (d) S1 (e) S2 (f) S3

(g) T1 (h) T2 (i) T3 (j) D1 (k) D2 (l) D3

Fig. 11. Illustration of R, G, and B color components and the various
components generated by CID, TDCS and STDCS on the Georgia Tech face
database.

(a) S1 (b) S2 (c) S3

Fig. 12. Illustration of 3 color components S1, S2, S3 in STDCS on the
Georgia Tech face database.

Tech face database. The same conclusion can also be drawn
from the matrix Usparse′

3 . In order to verify this, TDCS was
conducted on three different combinations of (R,B), (R,G) and
(G,B), respectively. The score matrix was generated by using
Euclidean distance. The ROC curves are illustrated in Fig. 13,
where the ROC curve of the combination of (R,B) shows better
performance than other two combinations.

To 50 individuals in the Georgia Tech database, 49 discrim-
inant projection basis vectors were extracted using LDA and
CID. For 2D-LDA, TDCS and STDCS, the two numbers of the
reduced spatial dimensions were both 10. In this experiment,
the score matrices were generated by using Manhattan distance
and Euclidean distance, respectively. In Fig. 14, Manhattan
distance and Euclidean distance are denoted by solid lines and
dash-dot lines. The results indicate that STDCS has the best
performance compared to other four algorithms. For TDCS,
the performance of using Euclidean distance is better than
that of using Manhattan distance. While for STDCS, the
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TDCS on the R,B components
TDCS on the R,G components
TDCS on the G,B components

Fig. 13. ROC curves of TDCS on (R,B) (R,G) and (G,B) combinations.
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STDCS on RGB using Manhattan
TDCS on RGB using Manhattan
CID on RGB using Manhattan
2D−LDA on Gray using Manhattan
LDA on Gray using Manhattan
STDCS on RGB using Euclidean
TDCS on RGB using Euclidean
CID on RGB using Euclidean
2D−LDA on Gray using Euclidean
LDA on Gray using Euclidean

Fig. 14. ROC curves of TDCS, CID, 2D-LDA and LDA on the Georgia
Tech face database.

performance of using Euclidean distance is worse than that
of using Manhattan distance. Even though the score matrix
was generated by the Euclidean distance, the performance of
STDCS is better than that of TDCS. From this figure, we
can also see that the space between two curves of STDCS is
narrower than that between two curves of TDCS. This shows
that the STDCS is more insensitive to similarity measurement
of images than TDCS.

In order to investigate robustness of models, all images in
the Georgia Tech database were manually aligned (two eyes
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 15. Sample images for one individual of the Georgia Tech database
(aligned facial images).

were used for alignment), cropped, and then re-sized to 32×32
pixels. To the cropped images as shown in Fig. 15, we retained
as much of the facial region as possible, by eliminating most of
the non-facial regions. The experiments with the same setting
described above were conducted on them. The score matrix is
generated by using Manhattan distance. The results of aligned
facial images and unaligned head images are plotted and
compared in Fig. 16. The solid lines denote the ROC curves
on the unaligned head images and the dash-dot lines denote
the ROC curves on the aligned facial images. Generally, the
performance on the aligned facial images should be better than
the performance on the unaligned head image. However, image
vector based methods, such as CID and LDA, achieve opposite
results where unaligned image provides better performance
than aligned image. This is due to the fact that vectorization
causes loss of the spatial structure information of images.
Comparing three color space models, we can also see that
the performances of STDCS and TDCS are better than that of
CID. Furthermore, the margin between two curves of STDCS
(or TDCS) is narrower than the margin between two curves
of CID. Among them, the two ROC curves of STDCS are
almost overlapped. This indicates that STDCS is more robust
than TDCS and CID for the color images. This also shows
that ℓ1 norm is more robust than ℓ2 norm [40].

In order to further investigate the robustness to noise, the
noises are added on the Georgia Tech face database by using
the same manner. Fig. 17 shows typical examples of noised
images. Fig. 18 shows the ROC curves of the two algorithms
in the three cases. The similar conclusions are drawn from the
figure. It is interesting that the performance of STDCS with
60% noised training samples is the best.

E. Experiments and results on the LFW face database

LFW database is designed for studying the problem of
unconstrained face recognition. From Fig. 4, we can see that
the skin color of the same person is different due to various
cameras. In this experiment, we randomly selected ⌊p/2⌋
images of each person (the person has p images) as the training
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STDCS on RGB head
TDCS on RGB head
CID on RGB head
2D−LDA on Gray head
LDA on Gray head
STDCS on RGB face
TDCS on RGB face
CID on RGB face
2D−LDA on Gray face
LDA on Gray face

Fig. 16. ROC curves of TDCS, CID, 2D-LDA and LDA on the Georgia
Tech face database.

Fig. 17. noise face images on the Georgia Tech face database.

set and the remaining images as the testing set. The CID,
TDCS and STDCS models were trained and we got three color
space transformation matrices:

X =

 1.0000 −1.0089 −0.3600
0.3166 0.2805 0.9981
−0.2236 0.9078 −0.6621

 , (43)

U3 =

−0.9103 0.6923 0.1885
0.4085 −0.7043 −0.7688
−0.0673 −0.1571 0.6111

 (44)

and

Usparse
3 =

 0 0.6733 −0.9736
−0.4744 −0.7394 0
0.8803 0 0.2281

 (45)

Using these three matrices, we got three color components D1,
D2, D3 of CID; three color components T1, T2, T3 of TDCS
and three color components S1, S2, S3 of STDCS. These com-
ponents are illustrated in Fig. 19. Intuitively, the components
of STDCS are more clear than those of TDCS and CID. In
order to further investigate the semantic interpretation of each
color component, we set the number of non-zero elements in
each column of the sparse color space transformation matrix
as one. The matrix is obtained as:

Usparse′

3 =

1 0 0
0 1 0
0 0 1

 (46)

From the above equation, we can see that each component
plays the same role. By the same way, 2D-LDA is imple-
mented on R, G and B components to verify the Intuition. In
Fig. 20, three ROC curves are illustrated from which we can
see that the curves of R G and B components are similar.

In the same way, STDCS, TDCS, CID, 2D-LDA and
LDA are conducted on the LFW face database. Due to 86
individuals in the LFW database, LDA and CID only extract 85
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(c) noise on testing set

Fig. 18. ROC curves of STDCS and TDCS the noised facial images of the Georgia Tech face database.
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Fig. 19. Illustration of R, G, and B color components and the various
components generated by CID, TDCS and STDCS on the LFW face database.
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Fig. 20. ROC curves of 2D-LDA on R, G and B components of LFW face
database.

discriminant projection basis vectors. Other parameters are the
same with previous section. The results indicate that STDCS
has the best performance compared to other four algorithms
from Fig. 21. Comparing with TDCS, two curves of STDCS
are overlapped. This shows that the STDCS is more insensitive
to similarity measurement of images than TDCS. we can also
see that the curves of the algorithms for gray images are almost
consistent and their performance are the worst. It reveals that
gray information is not enough for the discrimination of color
images in this more complex case.

Similar noised experiments are conducted on LFW database.
The results are illustrated in Fig. 22. Similar conclusions are
drawn from the figure.
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Fig. 21. ROC curves of STDCS, TDCS, CID, 2D-LDA and LDA on the
LFW face database.

VI. CONCLUSION

In this paper, we present a new color space model which is
named as the Sparse Tensor Discriminant Color Space (STD-
CS). By learning from training samples, the proposed model
optimizes one sparse color space transformation matrix and
two sparse discriminant projection matrices simultaneously.
The experiments on the AR, Georgia Tech and LFW color
face databases are systematically performed and analyzed. The
experimental results reveal a number of interesting remarks:

1) STDCS model can give an intuitionistic or semantic
interpretation.

2) STDCS is more robust not only for similarity measure-
ment of images but also for image alignments.

Our future work will be on the theoretical analysis of
convergence of the algorithm.
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